

COMUNE DI PONTASSIEVE

CITTÀ METROPOLITANA DI FIRENZE

REALIZZAZIONE DEGLI SPOGLIATOI E SERVIZI A CORREDO DEL CAMPO SUSSIDIARIO DA REALIZZARE NELL'AREA SPORTIVA DI PONTASSIEVE

.

VARIANTE AL REGOLAMENTO URBANISTICO COMUNALE AI SENSI ART. 34 DELLA LEGGE REGIONALE 65/2014 Via Giuseppe Di Vittorio

INDAGINI GEOLOGICHE E SISMICHE

ai sensi del Decreto del Presidente della Giunta Regionale 30 gennaio 2020 n. 5/R

> Maggio 2020 Cod. 0897EL0101

Comm. 897_109.18 Cod. 0897EL0101 Data MAGGIO 2020 Pagina 2 DI 148

INDICE

Premessa	3
Indagini geologiche	4
Indagini geognostiche ed Elaborati prodotti	5
Geologia	7
Morfologia e Stabilità dell'area	10
Idrogeologia	11
Modello litostratigrafico	12
Elementi geologico-tecnici e Misure di frequenza naturale	13
Sismicità	14
Pericolosità	16
Fattibilità	17
Allegato 1 Individuazione della Variante	19
Allegato 2 Piano Strutturale	22
Allegato 3 Microzonazione Sismica	29
Allegato 4 Indagini Geognostiche	83
Allegato 5 Pericolosità Sismica	144
Allegato 6 Fattibilità degli interventi	146

	N.	Dата	DESCRIZIONE	ELA.	VER.	APP.
SION						
REVIS	01	11/05/2020	REVISIONE A SEGUITO AGGIORNAMENTO NORMATIVO	LP	SV	LP
~	00	18/02/2020	EMISSIONE PER CONSEGNA	SV	LP	LP
89	7_109.18	Maggio 2020	INDAGINI GEOLOGICHE	Cod.	0897EL	0101

Comm. 897_109.18 Cod. 0897EL0101 Data MAGGIO 2020 Pagina 3 DI 148

PREMESSA

Le presenti indagini geologiche e sismiche, redatte ai sensi del Decreto del Presidente della Giunta Regionale 30 gennaio 2020, n. 5/R "Regolamento di attuazione dell'articolo 104 della legge regionale 10 novembre 2014, n. 65 (Norme per il governo del territorio) contenente disposizioni in materia di indagini geologiche, idrauliche e sismiche", sono di supporto alla Variante al Regolamento Urbanistico Comunale, ai sensi dell'articolo 34 della Legge Regionale 10 novembre 2014 n. 65, per la Realizzazione degli spogliatoi e Servizi a corredo del Campo Sussidiario da realizzare nell'Area Sportiva di Pontassieve (Allegato 1).

L'intervento prevede la costruzione di un edificio a servizio del nuovo campo da calcio sussidiario posto lungo via Giuseppe Di Vittorio (Allegato 1).

Il particolare il fabbricato ospiterà al piano terreno gli spogliatoi per gli atleti e gli arbitri, oltre a un locale infermeria, il magazzino, la biglietteria e i bagni per il pubblico; al piano superiore sarà collocata la tribuna e un locale tecnico per gli impianti.

Strutturalmente il nuovo edificio sarà costruito con struttura intelaiata in calcestruzzo armato realizzato in opera; i tamponamenti esterni saranno in laterizio alveolare.

Per i dettagli si rimanda agli altri elaborati progettuali.

Nelle indagini geologiche di supporto al Piano Strutturale, redatto secondo una normativa previgente, l'area sportiva interessata dall'intervento ricade in Pericolosità geomorfologica bassa G.1 (Allegato 2, Carta della pericolosità geomorfologica).

Nel dicembre 2017 è stato svolto sul territorio comunale uno Studio di Microzonazione Sismica di Livello 1, le cui indagini e i cui elaborati sono riportati in Allegato 3; dalle risultanze del suddetto studio e da quelle delle indagini sismiche condotte nello Studio di Microzonazione e per le presenti indagini (Allegati 3 e 4), si è attribuito, all'interno delle seguenti indagini, all'area sportiva interessata dall'intervento una Pericolosità sismica locale elevata S.3 (Allegato 5).

Relativamente alle problematiche di carattere idraulico si rimanda all'apposito studio di supporto alla Variante al regolamento Urbanistico.

Nel Piano di Bacino del Fiume Arno, Stralcio "Assetto Idrogeologico" (PAI), l'area sportiva interessata dall'intervento non ricade tra le aree interessate da pericolosità di carattere geomorfologico.

Comm. 897_109.18 Cod. 0897EL0101 Data MAGGIO 2020 Pagina 4 DI 148

INDAGINI GEOLOGICHE

Comm. 897_109.18 Cod. 0897EL0101 Data MAGGIO 2020 Pagina 5 DI 148

INDAGINI GEOGNOSTICHE ED ELABORATI PRODOTTI

Le presenti indagini geologiche sono basate sulla realizzazione di numerose indagini geognostiche, sia in sito di supporto al progetto in esame (Allegato 4) che di carattere bibliografico (Allegati 2 e 3), che hanno avuto ad oggetto l'area sportiva interessata dalla Variante, finalizzate alla ricostruzione litostratigrafica, geotecnica e sismica dei terreni.

Preliminarmente sono state consultate le cartografie tematiche del Piano Strutturale (Allegato 2), successivamente quelle del Piano di Bacino del Fiume Arno, Stralcio "Assetto Idrogeologico" e quelle della Regione Toscana, nonché lo studio di Microzonazione Sismica di Livello 1 redatto sul territorio comunale nel dicembre 2017 (Allegato 3).

Sono stati utilizzati i numerosi dati geologici, geomorfologici e idrogeologici reperibili in lavori professionali aventi ad oggetto aree limitrofe e similari a quella oggetto di Variante.

Successivamente, a completamento ed approfondimento di quanto raccolto, è stato realizzato un rilevamento geologico e geomorfologico dell'area in esame e di zone limitrofe, finalizzato alla individuazione delle forme antropiche e, secondariamente di quelle naturali, basato sulla Carta geologica del Piano Strutturale (Allegato 2) e sulla Carta Geologica Regionale, nonché sulla cartografia del Piano di Bacino, Stralcio Assetto idrogeologico.

Relativamente alle problematiche di carattere idrogeologico è stata consultata la Carta della permeabilità ed idrogeologica del Piano Strutturale e sono state effettuate misure della falda durante la campagna geognostica (Allegato 4).

In riferimento alle problematiche di carattere idraulico si rimanda all'apposito studio di supporto alla Variante al Regolamento Urbanistico.

In seguito alle attività precedentemente riportate ed alle esigenze progettuali, è stata condotta una approfondita campagna di indagini geognostiche, finalizzate alla definizione della successione litostratigrafica e delle caratteristiche geotecniche dei terreni.

In particolare, la campagna di indagine è stata così articolata (Allegato 4):

- Esecuzione di n. 1 sondaggio a carotaggio continuo della lunghezza di 10.0 metri
 - o Prelievo di n. 2 campioni indisturbati
 - o Esecuzione di n. 2 Prove penetrometriche standard in foro (SPT)
 - Attrezzamento del foro di sondaggio con piezometro a tubo aperto per la misura del livello delle acque di sottosuolo
- Analisi e prove geotecniche di laboratorio su n. 2 campioni di terreno prelevati durante il sondaggio a carotaggio continuo
- Esecuzione di n. 2 Prove penetrometriche dinamiche superpesanti DPSH (DPSH1 e DPSH2) e n. 1 Prova penetrometrica statica CPT (CPT3) con Penetrometro statico olandese tipo Gouda (tipo meccanico) da 20 tonnellate.
- Esecuzione di indagine geofisica costituita da n. 1 Indagine sismica a rifrazione in onde P e Sh.

Le caratteristiche dei macchinari utilizzati ed i certificati delle indagini condotte sono riportate in Allegato 4.

All'interno dello Studio di Microzonazione Sismica di Livello 1 del dicembre 2017 sono

Comm. 897_109.18 Cod. 0897EL0101 Data MAGGIO 2020 Pagina 6 DI 148

state eseguite in corrispondenza dell'area sportiva alcune indagini sismiche (Allegato 3):

- N. 1 Indagine Rifrazione/MASW
- N. 1 Misura HVSR

Infine, sono state redatte la Carta della pericolosità sismica locale e le fattibilità degli interventi in relazione agli aspetti geologici sismici (Allegati 5 e 6).

Le presenti indagini sono quindi supportate dai seguenti estratti ed elaborati:

ALLEGATO 1 INDIVIDUAZIONE DELLA VARIANTE

- Individuazione della Variante allo Strumento Urbanistico su estratto della Carta Tecnica Regionale (scala 1:10.000)
- Individuazione della Variante allo Strumento Urbanistico su estratto della Carta Tecnica Regionale (scala 1:2.000)

ALLEGATO 2 PIANO STRUTTURALE

- Tavola 3.1 Sud Carta geologica (scala 1:10.000)
- Tavola f.13 sud Carta della pericolosità geomorfologica (scala 1:10.000)

ALLEGATO 3 MICROZONAZIONE SISMICA

- Tavola G.01 Pontassieve Carta delle indagini (scala 1:5.000)
- Misura HVSR Stazione 21 Pontassieve
- Stesa sismica 35_SR
- Indagine MASW 103_MASW
- Tavola G.02 Pontassieve Carta geologico-tecnica (scala 1:5.000)
- Tavola G.04 Pontassieve Carta delle microzonazione omogenea in prospettiva sismica (scala 1:5.000)
- Tavola G.13 Sezioni geologico-tecniche con indicazioni MOPS

ALLEGATO 4 INDAGINI GEOGNOSTICHE

- Ubicazione delle indagini geognostiche (scala 1:2.000)
- Sondaggio S1
- Certificati analisi e prove geotecniche di laboratorio
- Diagrammi delle prove penetrometriche
- Indagine sismica a rifrazione

ALLEGATO 5 CARTA DELLA PERICOLOSITÀ SISMICA LOCALE

Carta della pericolosità sismica locale- (scala 1:2.000)

ALLEGATO 6 FATTIBILITÀ DEGLI INTERVENTI

- Carta della fattibilità in relazione agli aspetti geologici (scala 1:2.000)
- Carta della fattibilità in relazione agli aspetti sismici locali (scala 1:2.000)

Comm. 897_109.18 Cod. 0897EL0101 Data MAGGIO 2020 Pagina 7 DI 148

GEOLOGIA

L'area sportiva oggetto di Variante si trova nella porzione centro-occidentale dell'abitato di Pontassieve (Fi), tra la circonvallazione e la stazione ferroviaria, lungo Via Giuseppe Di Vittorio (Allegato 1), all'interno della pianura alluvionale originata dall'Arno e dai suoi affluenti principali, ad una distanza di circa 210 metri dalla sua sponda destra, alla quota di circa 85 metri sul livello del mare (Allegati 1 e 2).

L'area in esame è geologicamente caratterizzata dalla presenza di sedimenti alluvionali recenti e attuali originati dall'Arno e dai suoi affluenti principali, che poggiano su di un substrato costituito da litotipi argillitici riferibili alla Formazione di Sillano (Allegati 2 e 4).

Unità Liguri

FORMAZIONE DI MONTE MORELLO (MLL)

Formazione torbiditica, altrimenti nota nome "Alberese" auctt., vede l'alternarsi dei seguenti litotipi:

- Calcari marnosi compatti, bianchi o giallognoli a frattura concoide in strati di spessore variabile da pochi centimetri a qualche metro. Secondo Bortolotti (1962) si tratta di micriti con un contenuto di microfossili piuttosto basso; la percentuale di CaCO₃ varia dall'80% al 94%;
- Marne calcaree e marne granulari gialle o grigie con caratteristica sfaldatura "a saponetta" anch'esse in strati di spessore variabile da una decina di centimetri ad oltre dieci metri. Sono essenzialmente delle micriti sebbene con un contenuto fossilifero maggiore delle precedenti; la percentuale di CaCO₃ varia dal 70% all'85% (dal 60% al 70% per le marne);
- Calcareniti fini grigio chiare, marroni se alterate, in strati di spessore inferiore al mezzo metro. Localmente, associate a queste, si rinvengono calciruditi, anche grossolane di color grigio chiaro. Secondo Curcio & Sestini (1965) le calcareniti sono caratteristiche della parte basale della formazione. Studi eseguiti dagli stessi autori, in accordo con Parea (1965), hanno dimostrato come tali correnti di torbida abbiano visto una direzione di alimentazione del bacino deposizionale da nord ovest verso sud est.
- Arenarie grigie, marroni per alterazione, di solito in strati di spessore dai dieci ai quindici centimetri, ricche di calcare (più del 50%) e quarzo. In genere sono associate alle argilliti ed hanno le stesse strutture sedimentarie delle calcareniti;
- Argilliti grigio-scure a sfaldatura lamellare o scagliosa. Solitamente si presentano in strati piuttosto sottili alternate ai calcari; localmente possono raggiungere spessori di qualche metro.

In generale i calcari marnosi e le marne calcaree costituiscono circa l'80% dell'intera formazione e inoltre è possibile definire che le intercalazioni di materiale arenaceo e/o argillitico diminuiscono di spessore salendo nella sequenza.

Essendo una formazione "alloctona", ed avendo subito una importante traslazione di oltre 100 chilometri durante l'orogenesi appenninica, la Formazione di Monte Morello si presenta talvolta fratturata e scompaginata.

Comm. 897_109.18 Cod. 0897EL0101 Data MAGGIO 2020 Pagina 8 DI 148

Lo spessore della formazione è stato stimato in 800 metri sui Monti della Calvana (Bortolotti, 1964).

L'età della formazione è invece attribuibile all'intervallo Paleocene - Eocene medio.

FORMAZIONE DI SILLANO (SIL)

Argilliti, più o meno siltose scure o variegate, intercalate con calcari marnosi micritici di colore grigio-verde e marrone, marne marroni e grigie, calcareniti, arenarie calcarifere grigio scure tipo "Pietraforte". Nella facies più comune le argilliti sono prevalenti e inglobano strati, in genere sottili, degli altri tipi litologici. Altre facies abbastanza diffuse sono formate da una maggiore quantità di arenarie, fittamente interstratificate con argilliti grigie con o senza rare intercalazioni di calcari marnosi e marne.

La Formazione di Sillano rappresenta la base della Formazione di Monte Morello ("Alberese"); data però la condizione tettonica generale, in certe aree può risultare ridotta in spessore o non essere presente al di sotto di quest'ultima. Il passaggio alla superiore Formazione di Monte Morello può presentarsi sia brusco oppure graduale mediante alternanza.

Può, inoltre, presentare variazioni laterali di litologia con aumento della componente argillitica, oppure aumento, fino alla prevalenza, della componente arenacea (con passaggio alla "Pietraforte").

La porzione basale è solitamente caoticizzata ed i termini litoidi si ritrovano spezzettati e immersi in una massa argillitica.

Data la natura prevalentemente argillitica di questa formazione, la deformazione tettonica è spesso assai intensa, rendendo talvolta mal calcolabile lo spessore originario, anche a causa di probabili raddoppi tettonici interni ma non riscontrati in superficie durante i sopraluoghi.

L'età è compresa tra il Cretaceo superiore ed il Paleocene.

DEPOSITI ALLUVIONALI

DEPOSITI ALLUVIONALI RECENTI E ATTUALI

Depositi alluvionali recenti ed attuali originati dall'Arno e dai suoi affluenti. Questi sedimenti interessano il fondovalle e sono stati originati non prima dell'ultimo periodo glaciale, precedentemente alla canalizzazione degli argini dei corsi d'acqua che ha impedito il successivo evolvere delle aste fluviali nella pianura.

Depositi alluvionali solitamente costituite da due livelli principali. Il livello superiore è formato in prevalenza da limi, limi sabbiosi e sabbie limose in letti e lenti e con rare lenti a composizione ghiaioso-sabbiosa. Questi sedimenti, che rappresentano i depositi di piana alluvionale inondabile, hanno uno spessore variabile con massimi nell'ordine di alcuni metri. Il livello inferiore è invece formato prevalentemente da ghiaie con livelli di sabbie e rare lenti a composizione limoso argillosa e rappresenta i depositi di barra e di canale dell'alveo dell'Arno. Questo orizzonte raggiunge lo spessore di qualche metro nell'area indagata.

Questa suddivisione stratigrafica può risultare alquanto variabile a causa delle

Comm. 897_109.18 Cod. 0897EL0101 Data MAGGIO 2020 Pagina 9 DI 148

modalità di sedimentazione dei depositi fluviali.

In corrispondenza delle aste fluviali minori, la deposizione è legata ad un regime estremamente variabile della portata, caratterizzato da una estrema variabilità geometrica e litologica (granulometrica) dei depositi.

Il substrato dei depositi alluvionali è rappresentato nell'area in esame dai litotipi argillitici riferibili alla Formazione di Sillano (Allegati 2 e 4).

DEPOSITI ELUVIO-COLLUVIALI E DETRITICI

Depositi eluvio-colluviali costituiti da elementi eterometrici, in abbondante matrice sabbioso-limosa, derivanti dall'alterazione del substrato ed accumulati in posto dopo breve trasporto per ruscellamento e per gravità.

Comm. 897_109.18 Cod. 0897EL0101 Data MAGGIO 2020 Pagina 10 DI 148

MORFOLOGIA E STABILITÀ DELL'AREA

L'area sportiva oggetto di Variante si trova nella porzione centro-occidentale dell'abitato di Pontassieve (Fi), tra la circonvallazione e la stazione ferroviaria, lungo Via Giuseppe Di Vittorio (Allegato 1), all'interno della pianura alluvionale originata dall'Arno e dai suoi affluenti principali, ad una distanza di circa 210 metri dalla sua sponda destra, alla quota di circa 85 metri sul livello del mare (Allegati 1 e 2).

L'area in esame è geologicamente caratterizzata dalla presenza di sedimenti alluvionali recenti e attuali originati dall'Arno e dai suoi affluenti principali, che poggiano su di un substrato costituito da litotipi argillitici riferibili alla Formazione di Sillano (Allegati 2 e 4).

La zona non presenta, vista la morfologia interamente pianeggiante, fenomeni di instabilità di alcuna tipologia ed è da considerarsi stabile.

Nelle indagini geologiche di supporto al Piano Strutturale, redatto secondo una normativa previgente ma tuttora valido, l'area sportiva interessata dall'intervento ricade in Pericolosità geomorfologica bassa G.1 (Allegato 2, Carta della pericolosità geomorfologica), mentre non ricade nelle aree interessate da pericolosità di carattere geomorfologico nel Piano di Bacino del Fiume Arno, Stralcio "Assetto Idrogeologico" (PAI).

Comm. 897_109.18 Cod. 0897EL0101 Data MAGGIO 2020 Pagina 11 DI 148

IDROGEOLOGIA

I depositi alluvionali recenti e attuali presenti nel fondovalle sono caratterizzati da una buona permeabilità primaria per porosità e contengono un'importante falda freatica, alimentata sia da parte delle precipitazioni meteoriche, che dalle infiltrazioni di subalveo.

Nel livello inferiore dei depositi alluvionali a composizione ghiaioso-sabbiosa è presente una falda freatica di notevole importanza (Allegato 4).

La Formazione di Sillano si presenta come formazione dotata di una permeabilità, per porosità secondaria, generalmente molto bassa, data la presenza di litologie argillitiche che limitano la porosità dell'ammasso roccioso. Una certa circolazione idrica può essere presente in corrispondenza di livelli e/o lenti di calcareniti fratturate (Pietraforte) spesso non connesse tra loro. Talvolta tali lenti possono mostrare anche estensioni importanti. Schematicamente, si può riferire il sistema di circolazione idrica presente in queste unità a quello di un acquifero multistrato fessurato (multi-layered leaky aquifer system), con una produttività potenzialmente molto limitata.

In questi terreni non sono presenti falde idriche superficiali. Falde di una certa entità possono trovarsi solamente a profondità di diverse decine di metri in corrispondenza di lenti e/o livelli calcarei e calcarenitici fratturati. Una circolazione idrica subsuperficiale è presente nella coltre di alterazione del sottostante substrato litoide, soprattutto in concomitanza di periodi particolarmente piovosi.

Nella Carta idrogeologica del Piano Strutturale la profondità del tetto della falda freatica è posta alla quota variabile da circa 78 a 80 metri sul livello del mare, corrispondente ad una profondità di circa 4-6 metri dal piano campagna; misure effettuate nel piezometro a tubo aperto approntato nel foro di sondaggio realizzato nel febbraio 2019 hanno evidenziato una profondità della tavola d'acqua pari a 5 metri dal piano di campagna; in corrispondenza delle prove penetrometriche è stato rilevato un livello piezometrico variabile da 4.6 metri in DPSH2 a 5.2 metri in DPSH1 (Allegato 4).

Le misure effettuate sono in sostanziale accordo con le quote riportate nel Piano Strutturale; le oscillazioni stagionali del tetto della falda possono risultare ampie, anche nell'ordine di 1/2 metri.

Comm. 897_109.18 Cod. 0897EL0101 Data MAGGIO 2020 Pagina 12 DI 148

MODELLO LITOSTRATIGRAFICO

Le approfondite indagini geognostiche condotte hanno permesso di ricostruire le caratteristiche litostratigrafiche, geotecniche e sismiche dei terreni presenti in corrispondenza dell'area sportiva oggetto di Variante (Allegato 4).

La stratigrafia dei terreni presenti è ben evidenziata dai risultati del sondaggio a carotaggio continuo eseguito, che risulta in accordo con le prove penetrometriche e con l'indagine sismica a rifrazione in onde P e SH effettuata lungo il campo sportivo (Allegato 4).

Nell'area in esame sono, superficialmente, presenti depositi alluvionali recenti ed attuali originati dall'Arno e dai suoi affluenti e sono costituiti da due livelli principali. Il livello superiore è formato in prevalenza da limi, limi argillosi e limi sabbiosi e sabbie in letti e lenti. Questi sedimenti, che rappresentano i depositi di piana alluvionale inondabile, hanno uno spessore nell'area di intervento di circa 4 metri. Il livello inferiore è invece formato prevalentemente da ghiaie con livelli di sabbie e rappresenta i depositi di barra e di canale dell'alveo dell'Arno. Questo orizzonte raggiunge profondità di 6.8 metri dal piano campagna nel sondaggio a carotaggio continuo S1 e di 6.8-7.2 metri nelle prove penetrometriche dinamiche (Allegato 4).

Il substrato dei depositi alluvionali è rappresentato nell'area in esame dai litotipi argillitici riferibili alla Formazione di Sillano (Allegati 2 e 4); gli spessori e le loro variazioni lungo l'estensione dell'area sportiva sono ben evidenziati nelle varie indagini, sia geognostiche che sismiche condotte (Allegati 3 e 4).

Comm. 897_109.18 Cod. 0897EL0101 Data MAGGIO 2020 Pagina 13 DI 148

ELEMENTI GEOLOGICO-TECNICI E MISURE DI FREQUENZA NATURALE

Relativamente ai depositi recenti presenti nella porzione di territorio interessata dalla Variante sono stati attribuiti all'Unità geologico-tecnica GMes (Ghiaie limose, miscela di ghiaia, sabbia e limo, es = argine/terre/canali) i depositi alluvionali (Allegato 3).

All'Unità geologico-tecnica SFALS (Alternanza di litotipi, stratificato frattura-to/alterato) sono stati attribuiti i terreni riferibili alla Formazione di Sillano (Allegato 3).

La misura di sismica passiva eseguita durante lo Studio di Microzonazione sismica in corrispondenza dell'area della Variante (Stazione 21 Pontassieve) mostra un picco significativo ad una frequenza di 13 hertz ($12.97 \pm 0.28 \text{ hertz}$), corrispondente ad una profondità inferiore a 10 metri dal piano campagna (6.5 metri) corrispondente a quanto evidenziato dal sondaggio geognostico (6.8 metri), e un valore di ampiezza di 4.42.

Comm. 897_109.18 Cod. 0897EL0101 Data MAGGIO 2020 Pagina 14 DI 148

SISMICITÀ

L'Ordinanza del Presidente del Consiglio dei Ministri 20 marzo 2003 n. 3274, all'allegato 1 *Criteri per l'individuazione delle zone sismiche - individuazione, formazione ed aggiornamento degli elenchi delle medesime zone*, ha inserito l'estinto Comune di Pontassieve in zona 2, caratterizzata da valori dell'accelerazione orizzontale con probabilità di superamento pari al 10% in 50 anni compresi tra 0.15 e 0.25 g.

Con la Deliberazione della Giunta Regionale 19 giugno 2006 n. 431, Riclassificazione sismica del territorio regionale: "Attuazione del D.M. 14.9.2005 e O.P.C.M. 3519 del 28 aprile 2006 pubblicata sulla Gazzetta Ufficiale dell'11.5.2006", il territorio comunale è stato inserito in zona 3s, successivamente in zona 3 con il Decreto del Presidente della Giunta Regionale 26 ottobre 2012 n. 58/R "Regolamento di attuazione dell'articolo 117, comma 2, lettera g) della legge regionale 3 gennaio 2005, n. 1 (Norme per il governo del territorio). Verifiche nelle zone a bassa sismicità. Determinazione del campione da assoggettare a verifica".

Nel dicembre 2017 è stato svolto sul territorio comunale uno Studio di Microzonazione Sismica di Livello 1, i cui elaborati sono riportati in Allegato 3. Lo studio e l'elaborazione della Carta delle Microzone Omogenee in Prospettiva Sismica (MOPS) ha riguardato anche la porzione di territorio all'interno della quale rientra la Variante allo Strumento Urbanistico (Allegato 3).

L'area oggetto di Variante allo Strumento Urbanistico rientra tra le Zone stabili suscettibili di amplificazione locale in cui si hanno coperture costituite da depositi pleistocenici ghiaioso limosi (GM) di ambiente fluvio-lacustre (es), con spessore inferiore a 10 metri, poggianti su di un substrato costituito da alternanze di litotipi, stratificato fratturato/alterato (SFALS), a sua volta su di un substrato costituito da alternanza di litotipi, stratificato; la successione stratigrafica e le caratteristiche sismiche dei materiali determinano un alto contrasto di impedenza, ben evidenziato dalle risultanze dell'indagine H/V (Allegato 3).

Dalle risultanze dello Studio di Microzonazione sismica e da quelle delle indagini in sito condotte (Allegati 3 e 4), è stato possibile attribuire alla zona interessata dall'intervento una Pericolosità sismica locale elevata S.3 (Allegato 5), in quanto rientra tra le "zone stabili suscettibili di amplificazioni locali, connesse con un alto contrasto di impedenza sismica atteso entro alcune decine di metri dal piano campagna", come evidenziato dalle indagini dirette e dal picco di amplificazione della misura H/V (Allegati 3 e 4).

Le indagini geofisiche condotte, corroborate dalle indagini geognostiche dirette ed indirette, hanno permesso la definizione di una sezione sismica dell'area, l'individuazione dei vari orizzonti e la definizione della categoria di suolo (Allegati 3 e 4).

Ricadendo l'area di Variante in area caratterizzata da pericolosità sismica locale elevata S.3, in zona stabile suscettibile di amplificazione locale, caratterizzata da un alto contrasto di impedenza sismica tra copertura e substrato rigido, si è reso necessario, ai sensi della normativa, un approfondimento degli aspetti relativi agli spessori, alle geometrie e alle velocità sismiche dei litotipi sepolti per valutare l'entità del contrasto di rigidità sismica tra coperture e bedrock sismico.

Comm. 897_109.18 Cod. 0897EL0101 Data MAGGIO 2020 Pagina 15 DI 148

Come evidenziato nel Modello litostratigrafico, l'area è caratterizzata da coperture aventi uno spessore inferiore a 10 metri, costituite da depositi alluvionali recenti; questi depositi non presentano contrasti significativi di impedenza sismica al loro interno e sono caratterizzati da velocità delle onde di taglio da medie (200 metri/secondo) a alte (460/560 metri/secondo); il bedrock sismico, posto a profondità inferiori a 10 metri, è costituito da argilliti fratturate e parzialmente alterate, riferibili alla Formazione di Sillano, caratterizzate da una velocità delle onde di taglio di 800/850 metri/secondo (Allegati 3 e 4).

Dai valori della velocità delle onde di taglio registrata sui primi 30 metri dell'indagine sismica a rifrazione realizzata nel febbraio 2019, pari a 412 metri/secondo, il suolo di fondazione ricade in categoria di sottosuolo B, comprendente "Rocce tenere e depositi di terreni a grana grossa molto addensati o terreni a grana fina molto consistenti, caratterizzati da un miglioramento delle proprietà meccaniche con la profondità e da valori di velocità equivalente compresi tra 360 m/s e 800 m/s", secondo la tabella 3.2.II delle Norme Tecniche per le Costruzioni 2018.

Strato	Vs (m/s) SH		Spessore medio ONDE SH (m)	da	a
			SH		
1		200	3,42	0	-2,42
2		564	9,54	-2,42	-11,96
3	826		17,04	-11,96	30
	Metri Copertura	11,96	Fondazione	1	CATEGORIA
	6.0(2)30		1	6,912	- Contracting
3	spece		3	5,917	
1	0.021840				
					В
	125			AND	- 1
VS 3	0 (Se bed < 800 m/s)	0	VS Equivalente (Se bed > 800 m/s)	412,2	Rapporto Vs substrato / Vs copert (atteruione quando > 2.2)
		10.000			

Il campione S1C2, prelevato in corrispondenza del livello superiore dei depositi alluvionali, alla profondità di 3.5-3.8 metri dal piano campagna, costituito da sabbie limoso argillose, presenta un fuso granulometrico tale da rendere potenzialmente possibile il fenomeno della liquefazione (Allegato 4); tuttavia le percentuali di materiale fine limoso-argilloso nel campione superano il 55% e la profondità è tale da non essere sotto falda, mentre i materiali sotto falda risultano avere una composizione granulometrica prevalentemente ghiaioso-sabbiosa.

Pertanto, si ritiene che non sussistano problematiche relative alla suscettibilità alla liquefazione nell'area in esame.

Comm. 897_109.18 Cod. 0897EL0101 Data MAGGIO 2020 Pagina 16 DI 148

PERICOLOSITÀ

Nelle indagini geologiche di supporto al Piano Strutturale, redatto secondo una normativa previgente, l'area sportiva interessata dall'intervento ricade in Pericolosità geomorfologica bassa G.1 (Allegato 2, Carta della pericolosità geomorfologica).

Nel Piano di Bacino del Fiume Arno, Stralcio "Assetto Idrogeologico" (PAI), l'area sportiva interessata dall'intervento non ricade tra le aree interessate da pericolosità di carattere geomorfologico.

Nel dicembre 2017 è stato svolto sul territorio comunale uno Studio di Microzonazione Sismica di Livello 1, i cui elaborati sono riportati in Allegato 3; dalle risultanze del suddetto studio e da quelle delle indagini in sito condotte (Allegati 3 e 4), è stato possibile attribuire alla zona interessata dall'intervento una Pericolosità sismica locale elevata S.3 (Allegato 5), in quanto rientra tra le "zone stabili suscettibili di amplificazioni locali, connesse con un alto contrasto di impedenza sismica atteso entro alcune decine di metri dal piano campagna", come evidenziato dalle indagini dirette e dal picco di amplificazione della misura H/V (Allegati 3 e 4).

Relativamente alle problematiche di carattere idraulico si rimanda all'apposito studio idraulico di supporto alla Variante allo Strumento Urbanistico.

Comm. 897_109.18 Cod. 0897EL0101 Data MAGGIO 2020 Pagina 17 DI 148

FATTIBILITÀ

Le presenti indagini geologiche e sismiche, redatte ai sensi del Decreto del Presidente della Giunta Regionale 30 gennaio 2020, n. 5/R "Regolamento di attuazione dell'articolo 104 della legge regionale 10 novembre 2014, n. 65 (Norme per il governo del territorio) contenente disposizioni in materia di indagini geologiche, idrauliche e sismiche", sono di supporto alla Variante al Regolamento Urbanistico Comunale, ai sensi dell'articolo 34 della Legge Regionale 10 novembre 2014 n. 65, per la Realizzazione degli spogliatoi e Servizi a corredo del Campo Sussidiario da realizzare nell'Area Sportiva di Pontassieve (Allegato 1).

L'intervento prevede la costruzione di un edificio a servizio del nuovo campo da calcio sussidiario posto lungo via Giuseppe Di Vittorio (Allegato 1). Il particolare, il fabbricato ospiterà al piano terreno gli spogliatoi per gli atleti e gli arbitri, oltre a un locale infermeria, il magazzino, la biglietteria e i bagni per il pubblico; al piano superiore sarà collocata la tribuna e un locale tecnico per gli impianti.

Strutturalmente il nuovo edificio sarà costruito con struttura intelaiata in calcestruzzo armato realizzato in opera; i tamponamenti esterni saranno in laterizio alveolare.

Per i dettagli si rimanda agli altri elaborati progettuali.

Da quanto emerso nel presente studio, dall'analisi della cartografia prodotta, di quella di supporto allo Strumento Urbanistico generale, della cartografia del Piano di Bacino, dalle numerose e approfondite indagini effettuate e delle caratteristiche progettuali, si ritiene che non vi siano particolari limitazioni di carattere geologico e sismico alla realizzazione delle opere in progetto.

Le presenti indagini e lo studio geologico e geotecnico di supporto al progetto sono corredate da numerose, approfondite e adeguate indagini geognostiche, rispondenti alla normativa vigente in materia.

Relativamente ai vincoli e condizionamenti di carattere idraulico si rimanda allo studio all'apposito studio di supporto alla Variante allo Strumento Urbanistico.

FATTIBILITÀ IN RELAZIONE AGLI ASPETTI GEOLOGICI

L'area sportiva interessata dalla Variante risulta pianeggiante, non presenta fenomeni gravitativi o di instabilità e le caratteristiche litostratigrafiche e geotecniche dei terreni presenti non pongono particolari limitazioni agli interventi previsti.

Agli interventi previsti si può quindi attribuire una Fattibilità in relazione agli aspetti geologici con normali vincoli F2 (Allegato 6).

FATTIBILITÀ IN RELAZIONE AGLI ASPETTI SISMICI

L'area sportiva interessata dalla Variante è geologicamente caratterizzata da terreni alluvionali recenti e attuali con presenza di una falda idrica superficiale, che poggiano su di un substrato argillitico posto a profondità inferiori a 10 metri, che comporta un alto contrasto di impedenza fra coperture e substrato ben evidenziato dalle risultanze dell'indagine H/V

Comm. 897_109.18 Cod. 0897EL0101 Data MAGGIO 2020 Pagina 18 DI 148

(Allegati 2, 3 e 4).

Dalle analisi granulometriche sui campioni prelevati e dalla stratigrafia del sondaggio si ritiene che l'area in esame non sia suscettibile a problematiche relative alla liquefazione (Allegato 4).

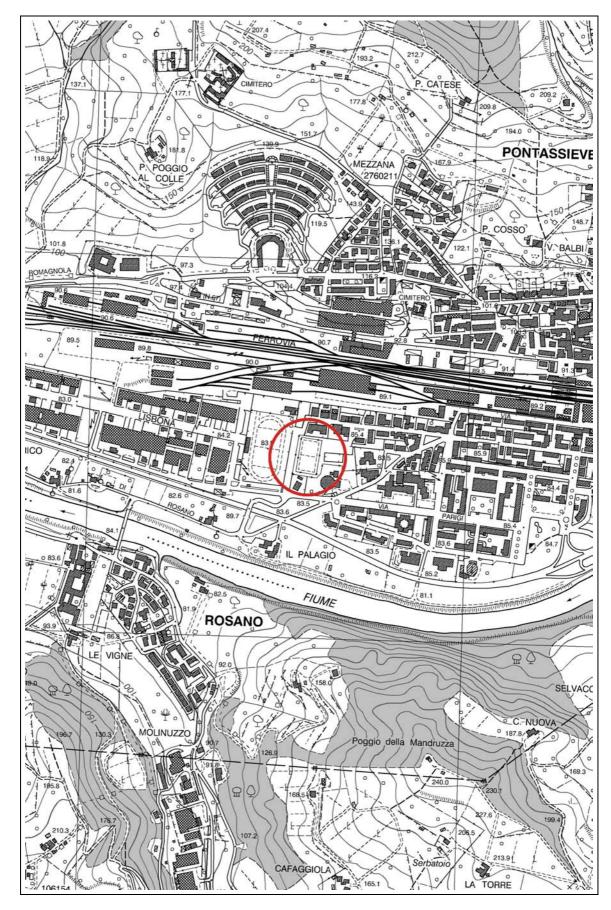
Agli interventi previsti si può quindi attribuire una Fattibilità in relazione agli aspetti sismici condizionata F3 (Allegato 7).

Luca Pagliazzi geologo

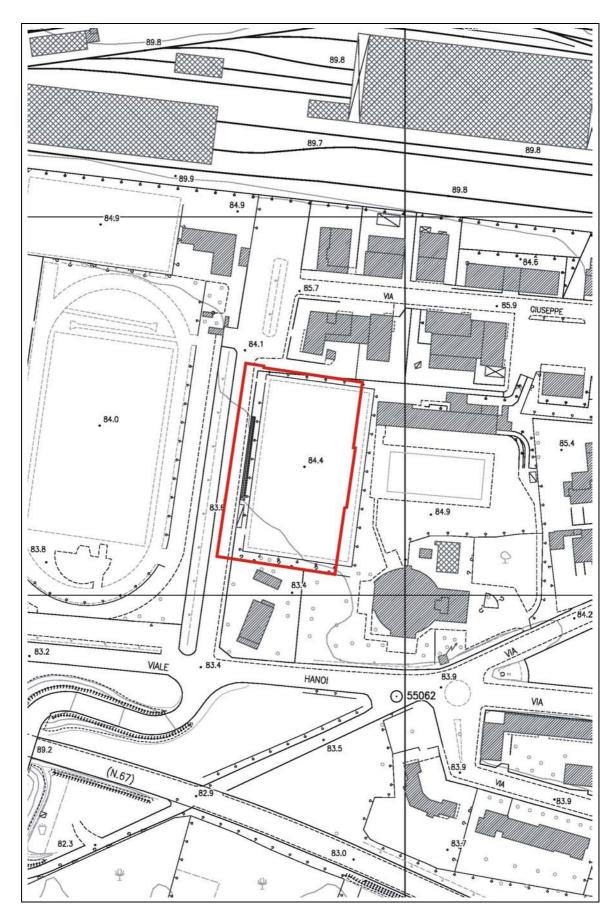
Comm. 897_109.18

Cod. 0897EL0101

Data MAGGIO 2020


Pagina 19 DI 148

ALLEGATO 1
INDIVIDUAZIONE DELLA VARIANTE


Comm. 897_109.18 Cod. 0897EL0101 Data MAGGIO 2020 Pagina 20 DI 148

Ubicazione dell'area oggetto della Variante allo Strumento Urbanistico su estratto della Sezione 276020, in scala 1:10.000, della Carta Tecnica Regionale.

Comm. 897_109.18 Cod. 0897EL0101 Data MAGGIO 2020 Pagina 21 DI 148

Ubicazione dell'area oggetto della Variante allo Strumento Urbanistico su estratto del Foglio 19L54, in scala 1:2.000, della Carta Tecnica Regionale.

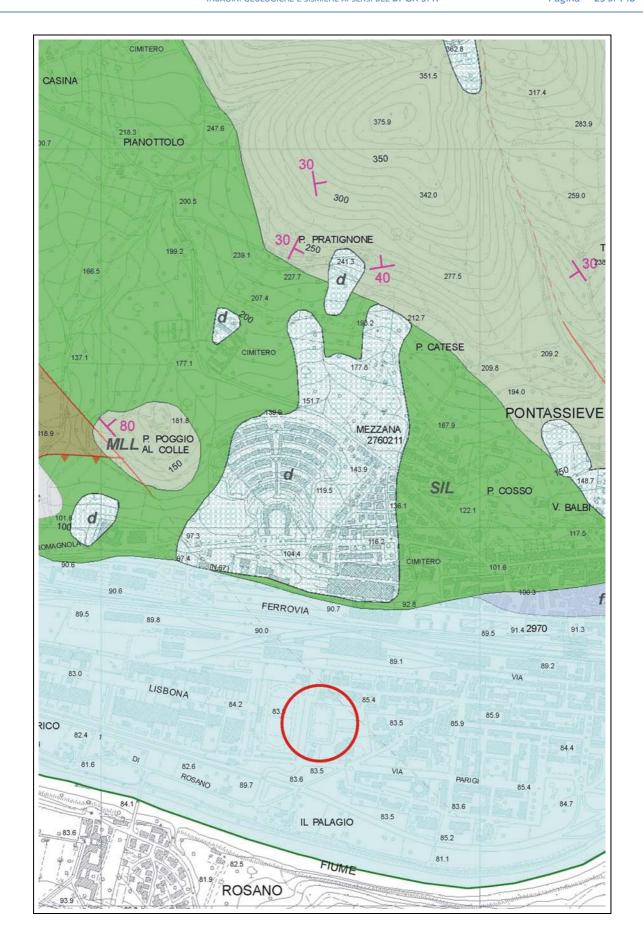
Comm. 897_109.18 Cod. 0897EL0101 Data MAGGIO 2020 Pagina 22 DI 148

ALLEGATO 2 PIANO STRUTTURALE

Comm. 897_109.18 Cod. 0897EL0101 Data MAGGIO 2020 Pagina 23 DI 148

COMUNE DI PONTASSIEVE PROVINCIA DI FIRENZE

AREA GOVERNO DEL TERRITORIO SERVIZIO ASSETTO DEL TERRITORIO


PIANO STRUTTURALE

SCALA: 1:10.000 ADOZIONE D.C.C. n°84 APPROVAZIONE D.C.C. n°154 TAV. N° 3.1 SUD DATA 16 GENNAIO 2003

Comm. 897_109.18 Cod. 0897EL0101 Data MAGGIO 2020 Pagina 24 DI 148

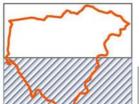
Lamanda	
Legenda	
Confine.shp	
DIREZIONE DEGLI STRATI	
FAGLIA CERTA	
FAGLIA INCERTA ABBASSATA	
FAGLIA PRESUNTA	
SOVRASCORRIMENTO CERTO	
▼ SOVRASCORRIMENTO PRESUNTO	
LITOLOGIA	
d - COLTRI DETRITICHE E COPERTIURE ELUVIO-COLLUVIALI	
a - DEPOSITI ALLUVIONALI	
ft - DEPOSITI FLUVIALI TERRAZZATI	
CONOIDE	220000
UNITA' TOSCANE - Unità dei Flysch terziari - Unità "Cervarola	- Falterona"
Cev - ARENARIE DEL CERVAROLA	
Poo - MARNE DI SAN POLO	
Fal - ARENARIE DEL FALTERONA	
C'-OLISTOSTROMI	
UNITA' SUBLIGURI - Unità di Canetolo Sen - ARENARIE DI MONTE SENARIO	
Sne - CALCARI E BRECCIOLE DI MONTE SENARIO	
NUM - BRECCIOLE NUMMULITICHE	
UNITA' LIGURI - Supergruppo della calvana	
MLL - FORMAZIONE DI MONTE MORELLO	
SIL - FORMAZIONE DI SILLANO	
RAA - FORMAZIONE DI VILLA RADDA	
PTF - PIETRAFORTE	
LEMBI CAOTICIZZATI	
c - COMPLESSO CAOTICO	
Totale_cadshp.shp	
N N	SCALA 1:10.000

Comm. 897_109.18 Cod. 0897EL0101 Data MAGGIO 2020 Pagina 25 DI 148

Comm. 897_109.18 Cod. 0897EL0101 Data MAGGIO 2020 Pagina 26 DI 148

INDAGINI GEOLOGICO TECNICHE DI SUPPORTO ALLA

VARIANTE AL REGOLAMENTO URBANISTICO DENOMINATA
"2° REGOLAMENTO URBANISTICO"


AGGIORNAMENTO DEL QUADRO CONOSCITIVO DEL PIANO STRUTTURALE D.PR.G.R. 27 aprile 2007, n°26/R

VALUTAZIONI DI PERICOLOSITA'

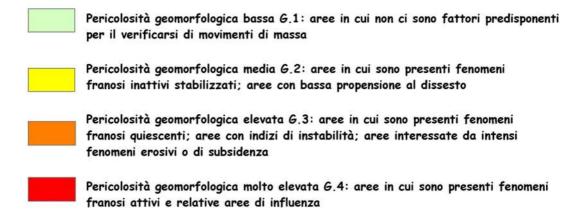
CARTA DELLA PERICOLOSITA' GEOMORFOLOGICA Elaborato f.13 sud

Il professionista incaricato: Prof.Geol. Eros Aiello

con: Dott.Geol. Gabriele Grandini

Febbraio 2009

Agg. Novembre 2009 - a seguito Decreto Aut. Bac. Arno n. 76 del 14.10.2009



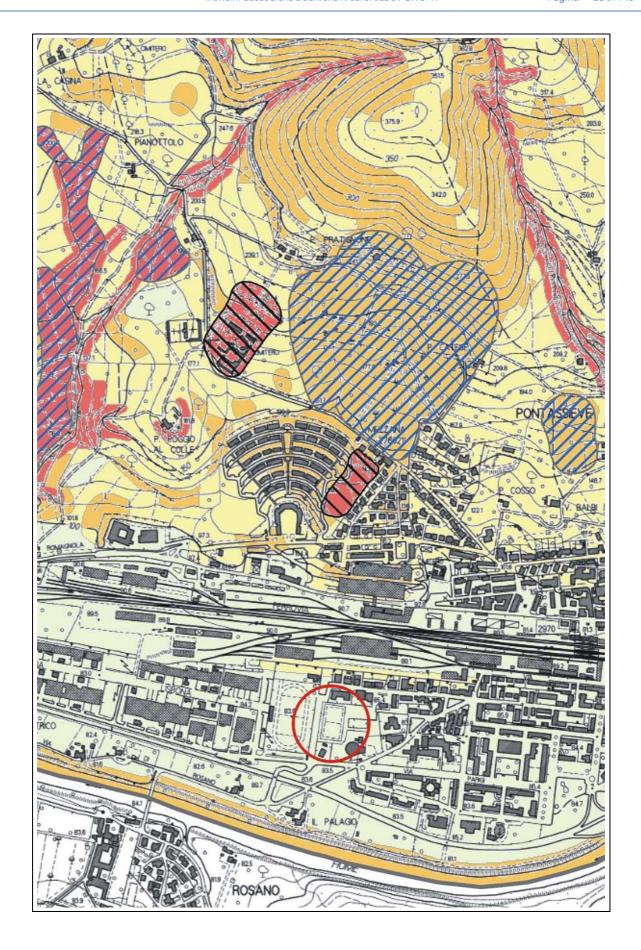
ASSOCIAZIONE PROFESSIONALE Via A. del Castagno, 8 - 50132 Firenze Tel. e Fax 055.571393 - 575954

scala 1:10.000

Comm. 897_109.18 Cod. 0897EL0101 Data MAGGIO 2020 Pagina 27 DI 148

Legenda

Perimetrazione delle aree a pericolosità da frana - da Piano Assetto Idrogeologico (Autorità di Bacino dell'Arno)



PF3 - Aree a pericolosità elevata

PF4 - Aree a pericolosità molto elevata

Comm. 897_109.18 Cod. 0897EL0101 Data MAGGIO 2020 Pagina 28 DI 148

Comm. 897_109.18

Cod. 0897EL0101

Data MAGGIO 2020 Pagina 29 DI 148

ALLEGATO 3 MICROZONAZIONE SISMICA

Comm. 897_109.18 Cod. 0897EL0101 Data MAGGIO 2020 Pagina 30 DI 148

Attuazione dell'articolo 11 della legge 24 giugno 2009, n. 77

MICROZONAZIONE SISMICA

Carta delle indagini

Tavola G.01 Pontassieve scala 1: 5.000

Regione Toscana Comune di Pontassieve (FI)

Regione

Regione Toscana - Settore Sismica

Soggetto realizzatore:

Comune di Pontassieve/Servizio Assetto del Territorio/RUP Dott. Fabio Carli

Professionisti incaricati: Dott. Geol. Eros Aiello Dott. Geol. Gabriele Grandin



Via Andrea del Castagno, 8 - 50132 Firenze tel.055/571393, 055/575954; fax.055/5522329 Data

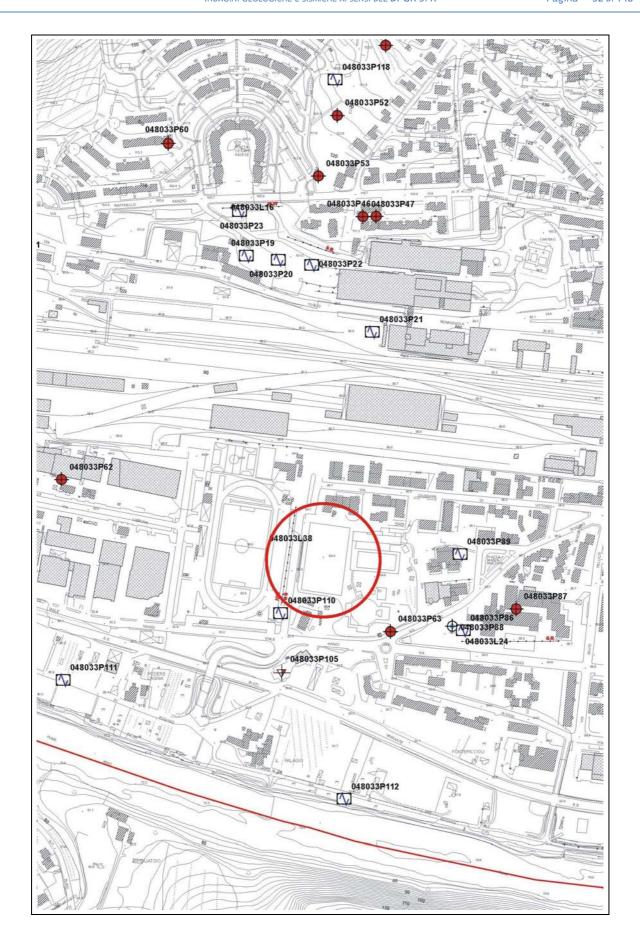
dicembre 2017

Comm. 897_109.18 Cod. 0897EL0101 Data MAGGIO 2020 Pagina 31 DI 148

Legenda

- Sondaggio con piezometro
- Sondaggio a carotaggio con campioni
- Sondaggio con downhole
- Sondaggio a carotaggio continuo con inclinometro
- Prova penetrometrica statica con punta meccanica (CPT)
- Prova penetrometrica dinamica pesante
- Pozzo per acqua
- Stazione microtremore a stazione singola

MASW


Stendimento sismica a riflessione

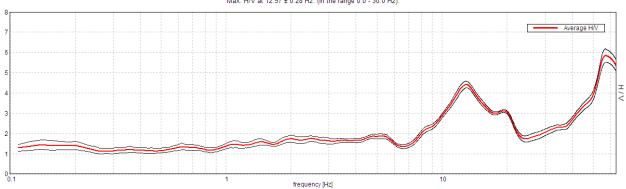
Stendimento sismica a rifrazione

Altre notazioni
Limite approfondimento

0 250 500 Metri 1.000

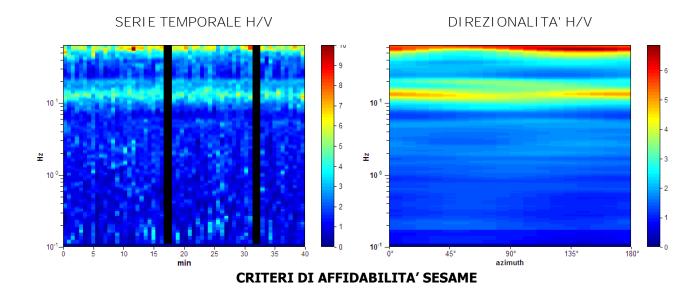
Comm. 897_109.18 Cod. 0897EL0101 Data MAGGIO 2020 Pagina 32 DI 148

MICROZONAZIONE SISMICA DI PRIMO LIVELLO COMUNE DI PONTASSIEVE (FI)


Stazione	21
Strumento	Tromino Micromed
Data acquisizione	05/09/17
Coordinate Lat.	43°46.3124 N
Coordinate Long.	11°25.7395 E
Durata registrazione:	40 minuti
Freq. campionamento	128 Hz
Lunghezza finestre:	40 s
Numero di finestre analizzate	56 (93% del tracciato)
Tipo di lisciamento:	Triangular window
Lisciamento:	10%
Orientamento strumentazione	0° N
Terreno di misura	Suolo Naturale

对于公司	
《 自己数字》	《 》
为大利金头类 艾金	
《大学》、"大学	
	公民也为公司的
	是是一个人,但是一个人的人,但是一个人的人,但是一个人的人,但是一个人的人,但是一个人的人,但是一个人的人,但是一个人的人,但是一个人的人,但是一个人的人,也不
《在达》 《五节》	
《 有心》为"	少国家的大学的大学
第一个人	
	《新文学》

Frequenza del picco H/V max (f ₀)	12.97 ± 0.28 Hz
Ampiezza Media alla frequenza fo	4.42


RAPPORTO SPETTRALE H/V

Max. H/V at 12.97 \pm 0.28 Hz. (In the range 0.0 - 30.0 Hz).

SPETTRI DELLE SINGOLE COMPONENTI

Picco H/V a 12.97 \pm 0.28 Hz (nell'intervallo 0.0 - 30.0 Hz).

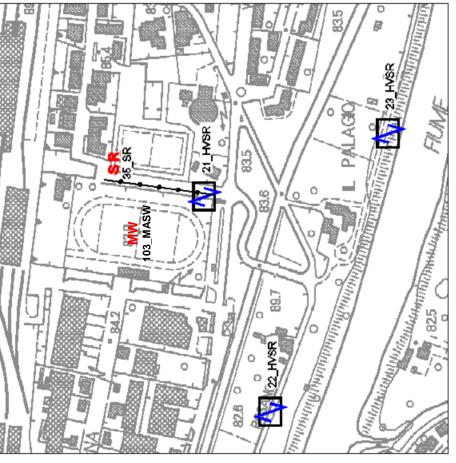
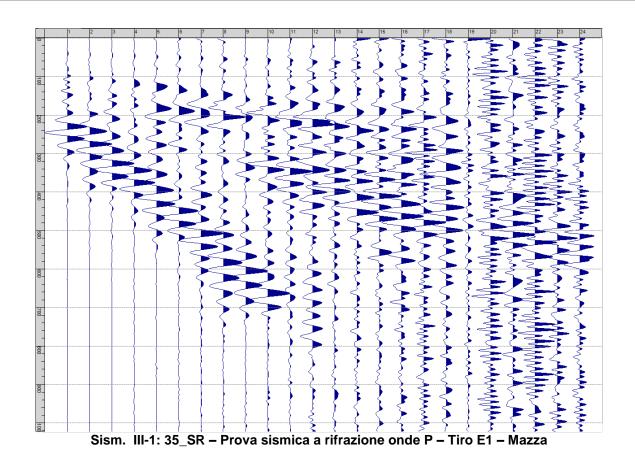
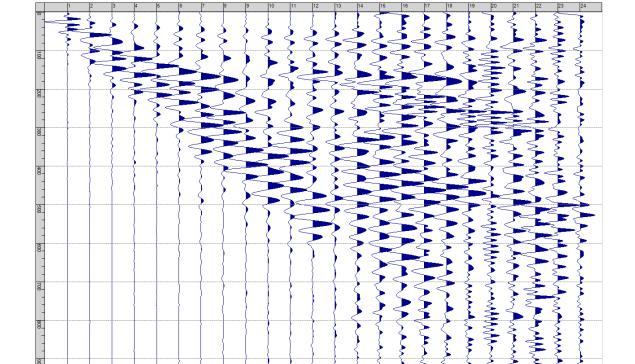
	una curva H/V affidabile vrebbero risultare soddisfatti]		
$f_0 > 10 / L_w$	12.97 > 0.25	OK	
$n_c(f_0) > 200$	29050.0 > 200	OK	
$\sigma_A(f) < 2 \text{ per } 0.5f_0 < f < 2f_0 \text{ se } f_0 > 0.5Hz$ $\sigma_A(f) < 3 \text{ per } 0.5f_0 < f < 2f_0 \text{ se } f_0 < 0.5Hz$	Superato 0 volte su 1246	ОК	
•	er un picco H/V chiaro 6 dovrebbero essere soddisfatti]		
Esiste f in $[f_0/4, f_0] \mid A_{H/V}(f) < A_0 / 2$	8.422 Hz	OK	
Esiste f + in $[f_0, 4f_0] A_{H/V}(f +) < A_0 / 2$	21.922 Hz	OK	
A ₀ > 2 4.42 > 2 OK			
$f_{\text{picco}}[A_{\text{H/V}}(f) \pm \sigma_{\text{A}}(f)] = f_0 \pm 5\%$	0.02192 < 0.05	OK	
$\sigma_{\rm f} < \epsilon({\sf f}_0)$	0.28421 < 0.64844	OK	
$\sigma_{A}(f_0) < \theta(f_0)$	0.1618 < 1.58	OK	

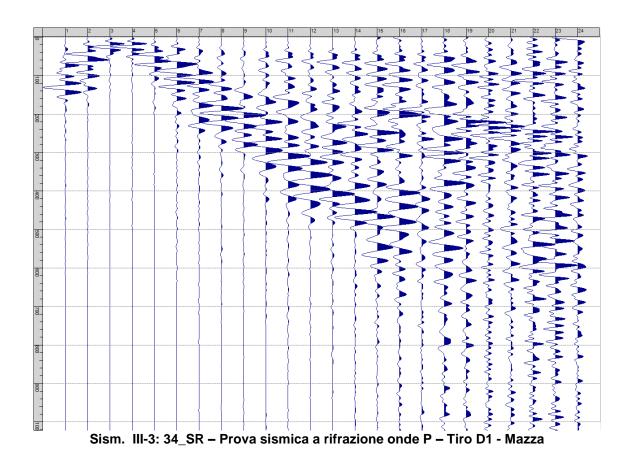
CLASSIFICAZIONE PROPOSTA DA ALBARELLO ET ALII		
DURATA	Durata registrazione (min): 40	SI
STAZIONARIETA'	% (∑Lw/ durata registrazione)= 93%	SI
ISOTROPIA		SI
ASSENZA DISTURBI		SI
PLAUSIBILITA' FISICA		SI
ROBUSTEZZA STATISTICA	Verificati i tre criteri SESAME per una curva affidabile	SI

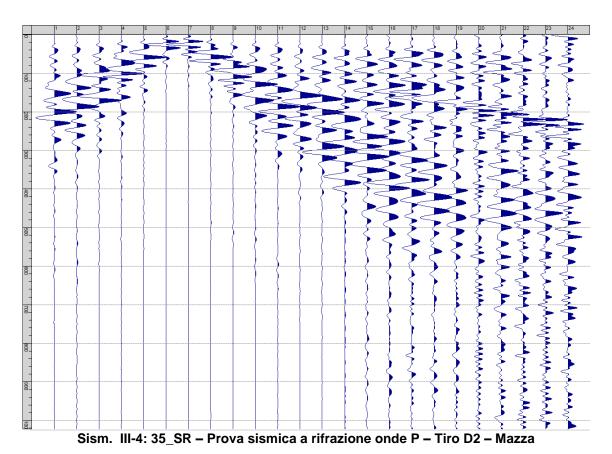
CLASSE	A1
--------	----

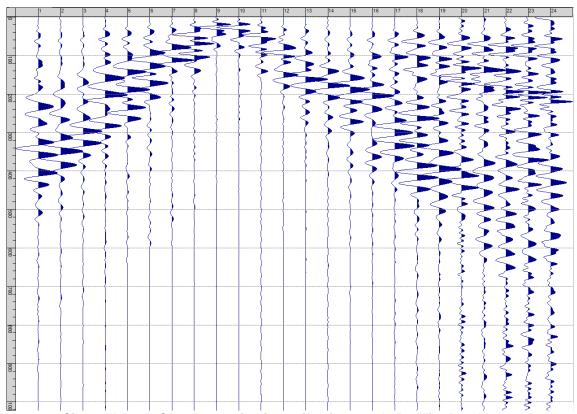
RELAZIONE TECNICA INTERPRETATIVA SULLE INDAGINI GEOFISICHE PER LA MICROZONAZIONE SISMICA DI LIVELLO 1

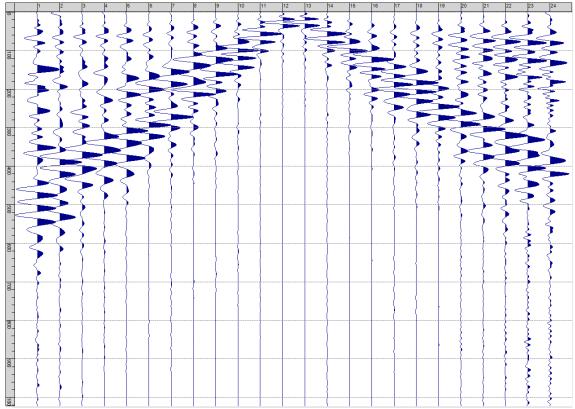
III. ALLEGATO GRAFICO: STESA SISMICA 35_SR ONDE P – SISMOGRAMMI - TABULATI PRIMI ARRIVI – TABULATI PROFONDITA' E VELOCITA' RIFRATTORI – DROMOCRONE — SEZIONI SISMOSTRATIGRAFICHE – TOMOGRAFIE

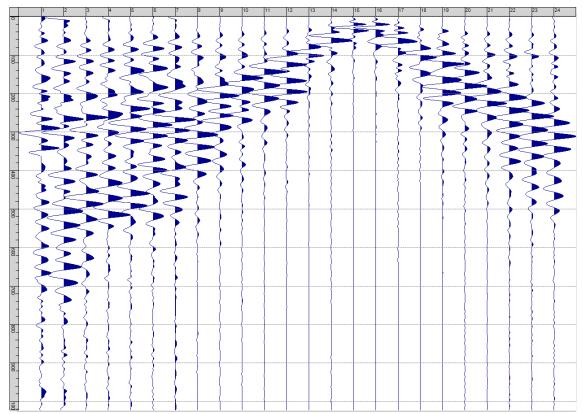




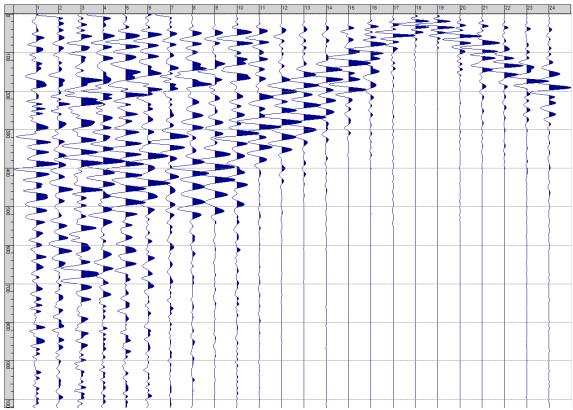


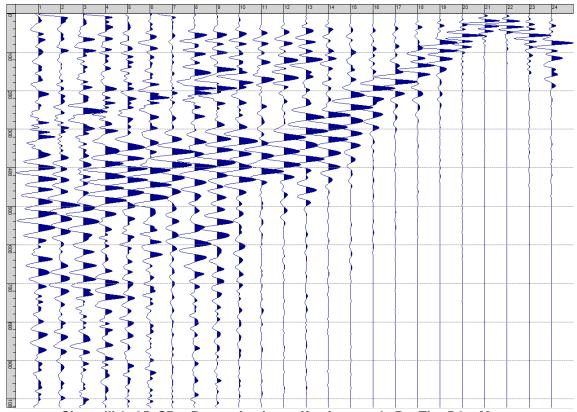

Fig. III-1: Ripresa fotografica ed inquadramento scala 1:5000

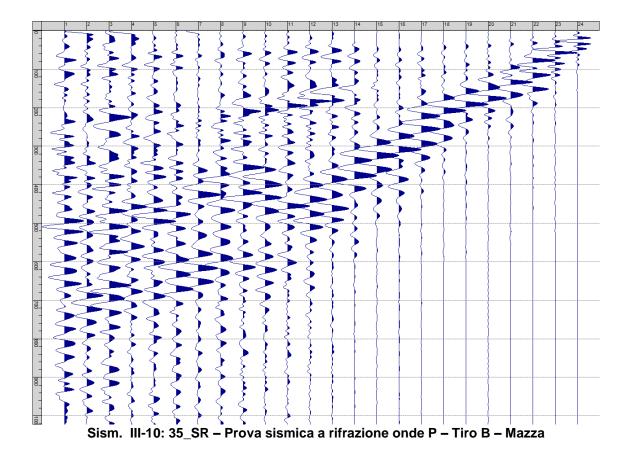


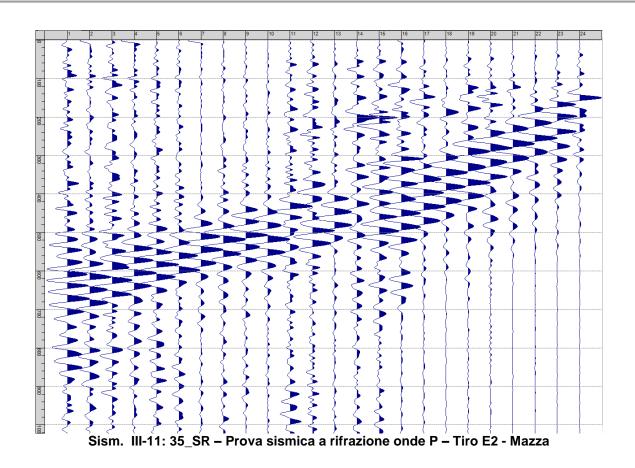

Sism. III-2: 35_SR - Prova sismica a rifrazione onde P - Tiro A - Mazza




Sism. III-5: 35_SR - Prova sismica a rifrazione onde P - Tiro D3 - Mazza


Sism. III-6: 35_SR - Prova sismica a rifrazione onde P - Tiro C - Mazza


Sism. III-7: 35_SR - Prova sismica a rifrazione onde P - Tiro D4 - Mazza


Sism. III-8: 35_SR - Prova sismica a rifrazione onde P - Tiro D5 - Mazza

Sism. III-9: 35_SR - Prova sismica a rifrazione onde P - Tiro D6 - Mazza

ENKI s.r.l. - info@enki.it - Firenze

ALE E RELAZIONE TECNICA INTERPRETATIVA SULLE INDAGINI GEOFISICHE PER LA SIEVE MICROZONAZIONE SISMICA DI LIVELLO 1

Tab. III-1: Stesa sismica 35_SR ONDE P - Schema dettagliato

GEOEONI	,	7	2	_	٦	y	7	o	σ	10	11	12	13	1/	15	16	17	18	10	20	21	77	23	7/
QLOI OINI	Ţ	7	n	t	r	>	,	٥	r	CT.	7.7	77	CT	+1	CT	ΩŦ	/T	οT	CT	27	T7	77	۲2	+7
TANZA PROGRESSIVA [m]	0	4	∞	12	16	20	24	28	32	36	9	44	48	25	26	09	64	89	72	92	8	84	88	95
DISTANZA PARZIALI [m]	-	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4
QUOTA [m]	84.0	84.0	84.0	6.88 0.1	83.9	83.9	83.9	83.9	83.8	83.8	83.8	83.8	83.7	83.7	83.7	83.7	83.7	83.6	83.6	93.6	83.6	83.6	83.5	83.5

Tab. III-2: Stesa sismica 35_SR ONDE P - Punti energizzazione (SCOPPIO)

E1 A									
CONTRACTOR CONTRACTOR	D1	D2	D3	O	72	D2	9G	В	E2
ESTERNO SX ESTREMO SX	SX INTERMEDIO S	SX INTERMEDIO SX	INTERMEDIO SX	CENTRALE	INTERMEDIO DX	INTERMEDIO DX	INTERMEDIO DX	ESTREMO SX	ESTERNO DX
POSIZIONE DAL GEOFONO 1 [m] -22.5	11.3	24.8	38.3	51.8	65.3	78.8	92.3	105.8	126
QUOTA [m] 84.1 84.0	83.9	83.9	83.8	83.8	83.7	83.6	83.6	83.5	83.4

Pagina 137

Tab. III-3: Stesa sismica 35_SR ONDE P - Tabella scoppi - primi arrivi

E2 s]																								
SCOPPIO E2 PRIMO ARRIVO [ms]	22	22	22	22	22	95	95	99	22	53	51	49	47	44	43	41	40	38	37	98	33	32	31	27
SCOPPIO B SCOPPIO E2 PRIMO PRIMO ARRIVO [ms] ARRIVO [ms]	26	54	53	51	49	46	45	44	43	41	39	37	36	34	34	33	30	29	26	56	22	21	18	15
	50	50	48	46	44	44	43	40	36	35	34	31	29	29	28	27	26	23	21	19	14	14	19	21
SCOPPIO DS SCOPPIO D6 PRIMO PRIMO ARRIVO [ms] ARRIVO [ms]	48	48	45	44	40	39	38	35	34	32	29	29	27	25	23	21	19	14	13	21	21	25	27	29
	46	45	42	41	40	37	35	32	31	28	27	25	23	20	13	13	19	23	24	27	28	30	32	32
SCOPPIO C SCOPPIO D4 PRIMO PRIMO ARRIVO [ms]	40	38	35	34	31	30	28	25	23	21	18	12	10	18	21	23	24	25	27	30	30	31	33	36
SCOPPIO D3 PRIMO ARRIVO [ms]	34	33	31	28	26	24	21	18	6	6	19	22	24	26	28	30	31	32	33	37	38	39	40	41
SCOPPIO D2 PRIMO ARRIVO [ms]	27	26	23	21	18	9	9	18	21	24	25	28	29	32	34	35	36	37	40	42	42	43	43	44
) D1 0 [ms]	20	18	9	7	18	21	23	24	26	30	32	34	35	38	40	42	43	43	44	48	47	49	20	52
SCOPPIO A PRIMO ARRIVO [ms]	7	18	20	23	27	28	31	32	35	36	38	41	42	44	46	47	20	50	52	55	26	22	57	58
SCOPPIO E1 SCOPPIO A SCOPPIC PRIMO PRIMO PRIMO PRINO ARRIVO [ms] ARRIVO [ms]	27	28	29	32	36	98	68	42	44	46	48	67	95	51	25	23	23	22	23	99	99	89	69	09
DISTANZA [m]	0	4	8	12	16	20	24	28	32	36	40	44	48	52	26	09	64	89	72	9/	80	84	88	92
GEOFONO	1	2	3	4	2	9	7	8	6	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24

Tab. III-4:Stesa sismica 35_SR ONDE P - Sezione sismostratigrafica - Rifrattori spessori e velocità

05050111	5.65	QUOTA PROFILO	VELOCITA'	QUOTA	VELOCITA'	QUOTA	VELOCITA'
GEOFONI	DISTANZA	TOPOGRAFICO	STRATO 1	STRATO 1	STRATO 2	STRATO 2	STRATO 3
STAZIONE	[m]	[m]	[m/s]	[m]	[m/s]	[m]	[m/s]
1	0	83.99	428	81.31	1715	73.34	2550
1.5	2.25	83.98	428	81.29	1716	73.23	2581
2	4.5	83.97	428	81.27	1720	73.10	2610
2.5	6.75	83.96	428	81.24	1722	72.97	2638
3	9	83.95	428	81.21	1720	72.84	2667
3.5	11.25	83.94	428	81.18	1720	72.71	2696
4	13.5	83.93	428	81.14	1725	72.57	2729
4.5	15.75	83.92	428	81.10	1731	72.45	2760
5	18	83.91	428	81.07	1737	72.35	2795
5.5	20.25	83.90	428	81.03	1745	72.27	2827
6	22.5	83.89	428	81.00	1756	72.21	2860
6.5	24.75	83.88	428	80.97	1770	72.17	2892
7	27	83.87	428	80.94	1784	72.16	2925
7.5	29.25	83.86	428	80.91	1796	72.16	2957
8	31.5	83.85	428	80.88	1809	72.19	2984
8.5	33.75	83.84	428	80.85	1821	72.22	3000
9	36	83.82	428	80.83	1831	72.28	3012
9.5	38.25	83.81	428	80.81	1836	72.36	3020
10	40.5	83.80	428	80.79	1841	72.46	3023
10.5	42.75	83.79	428	80.77	1847	72.58	3018
11	45	83.78	427	80.75	1852	72.72	3012
11.5	47.25	83.77	427	80.73	1857	72.88	2997
12	49.5	83.76	427	80.71	1862	73.06	2987
12.5	51.75	83.75	427	80.69	1868	73.27	2978
13	54	83.74	427	80.67	1873	73.49	2970
13.5	56.25	83.73	426	80.65	1878	73.72	2962
14	58.5	83.72	425	80.63	1883	73.96	2948
14.5	60.75	83.71	425	80.61	1889	74.19	2928
15	63	83.70	425	80.59	1894	74.42	2907
15.5	65.25	83.69	425	80.57	1899	74.64	2880
16	67.5	83.68	425	80.55	1905	74.85	2852
16.5	69.75	83.67	424	80.53	1910	75.04	2819
17	72	83.65	424	80.50	1915	75.22	2782
17.5	74.25	83.64	424	80.48	1920	75.39	2746
18	76.5	83.63	423	80.46	1926	75.54	2715
18.5	78.75	83.62	423	80.44	1931	75.67	2689
19	81	83.61	423	80.43	1936	75.80	2669
19.5	83.25	83.60	423	80.41	1941	75.90	2649
20	85.5	83.59	423	80.39	1947	75.99	2631
20.5	87.75	83.58	423	80.37	1952	76.06	2614
21	90	83.57	423	80.35	1957	76.11	2600
21.5	92.25	83.56	423	80.33	1953	76.13	2585
22	94.5	83.55	423	80.31	1947	76.14	2571
22.5	96.75	83.54	423	80.29	1941	76.14	2557
23	99	83.53	423	80.28	1937	76.12	2543
23.5	101.25	83.52	423	80.26	1934	76.09	2528
24	103.5	83.51	423	80.25	1932	76.06	2515

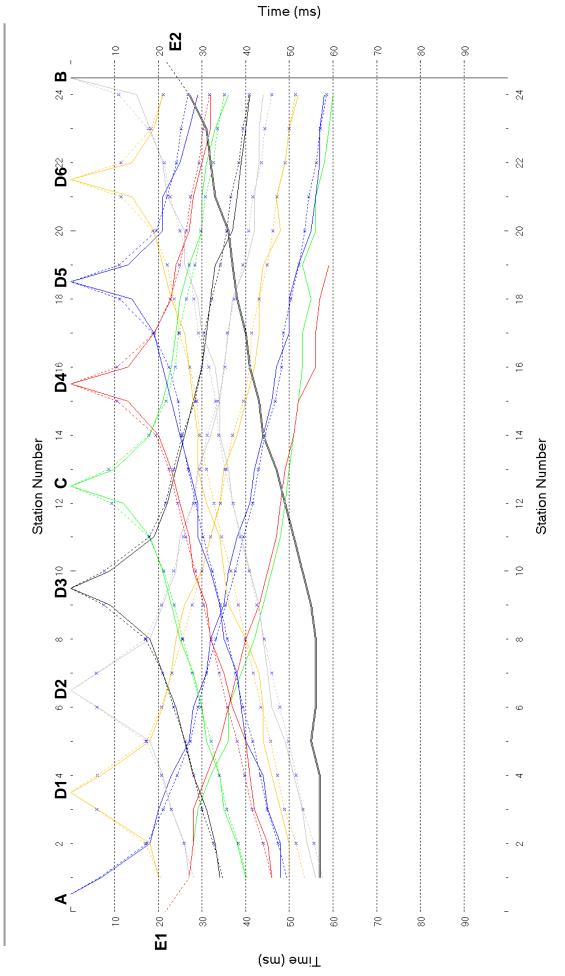


Fig. III-2: Stesa sismica 35_SR ONDE P - Dromocrone - Scala 1:500

RELAZIONE TECNICA INTERPRETATIVA	SULLE INDAGINI GEOFISICHE PER LA	MICROZONAZIONE SISMICA DI LIVELLO 1	
VARIANTE GENERALE AL PIANO STRUTTURALE E	REGOLAMENTO URBANISTICO - AGGIORNAMENTO SULL	QUADRO CONOSCITIVO - COMUNE DI PONTASSIEVE MICR	

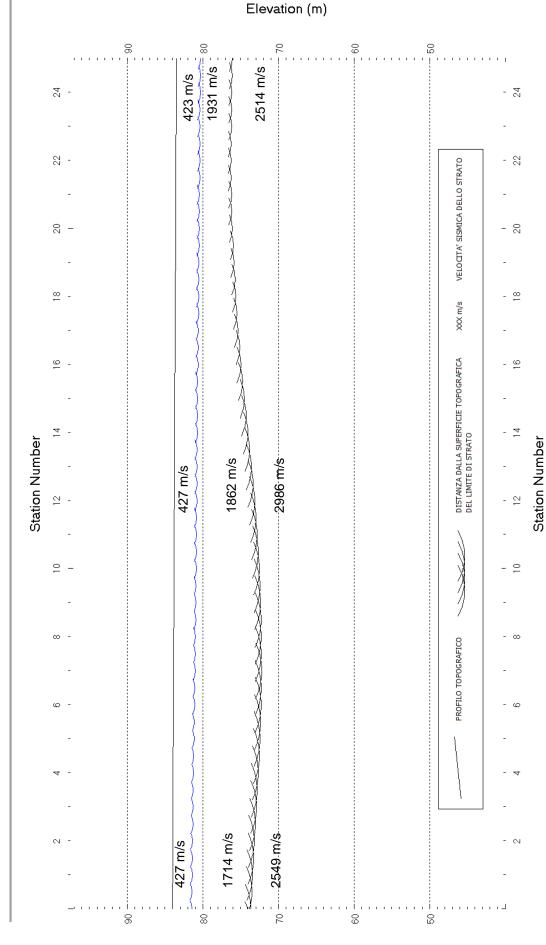


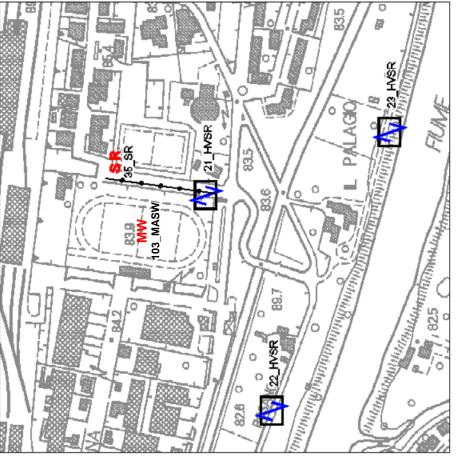
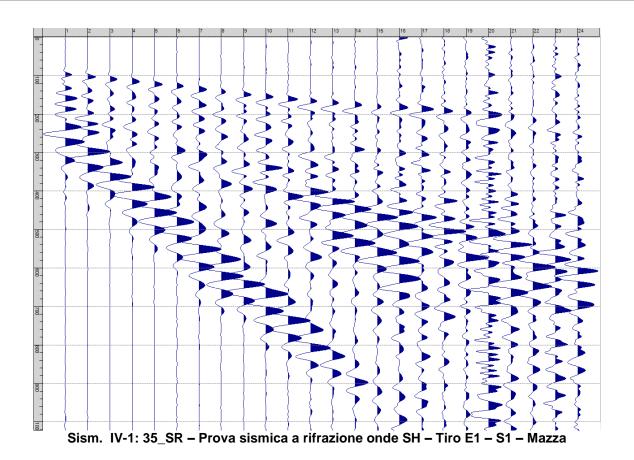
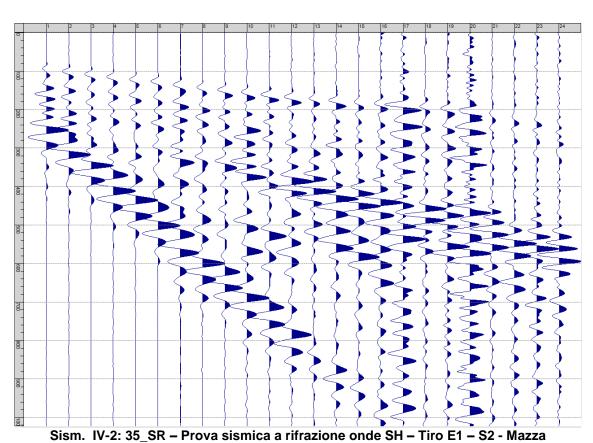
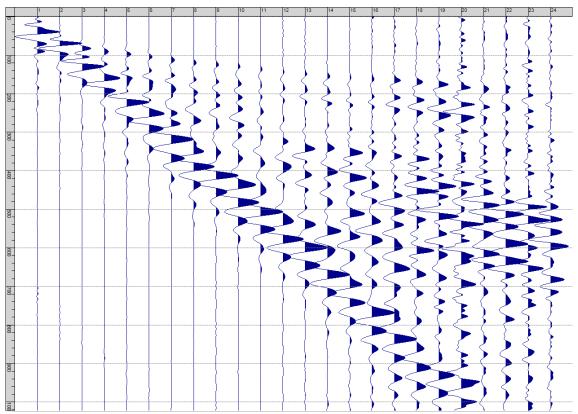
Fig. III-3: Stesa sismica 35_SR ONDE P - Sezione Sismostratigrafica - Scala 1:600

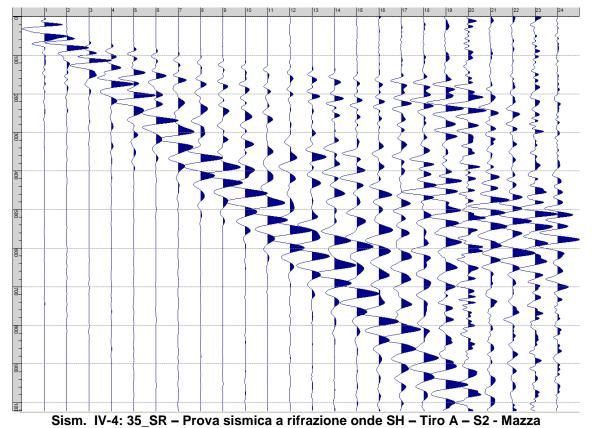
Fig. III-4: Stesa sismica 35_SR ONDE P - Tomografia sismica - Scala 1:500

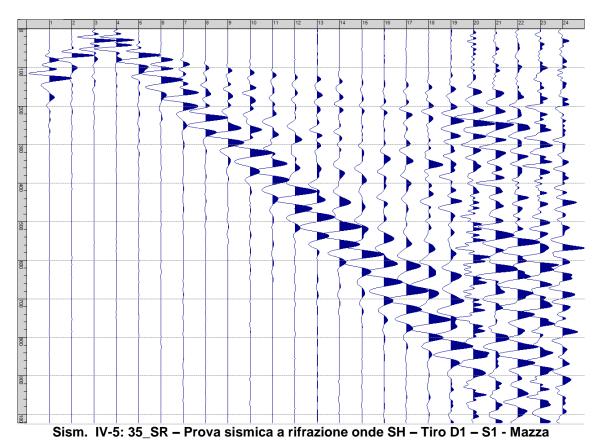
PUNTI DI ENERGIZZAZIONE

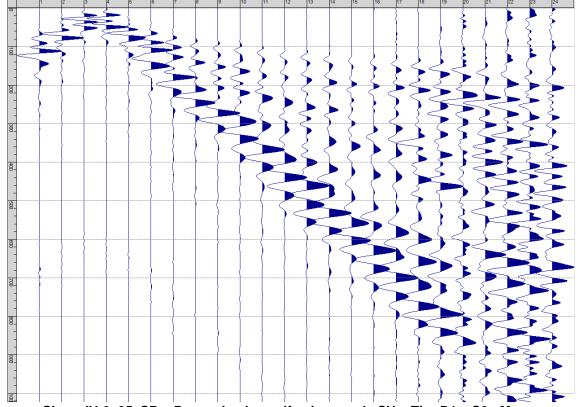
RELAZIONE TECNICA INTERPRETATIVA SULLE INDAGINI GEOFISICHE PER LA MICROZONAZIONE SISMICA DI LIVELLO 1

IV. ALLEGATO GRAFICO: STESA SISMICA 35_SR ONDE SH – SISMOGRAMMI
 TABULATI PRIMI ARRIVI – TABULATI PROFONDITA' E VELOCITA'
 RIFRATTORI – DROMOCRONE — SEZIONI SISMOSTRATIGRAFICHE – TOMOGRAFIE

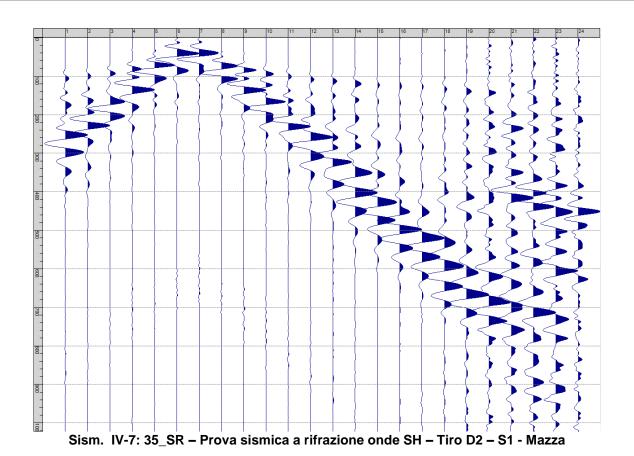





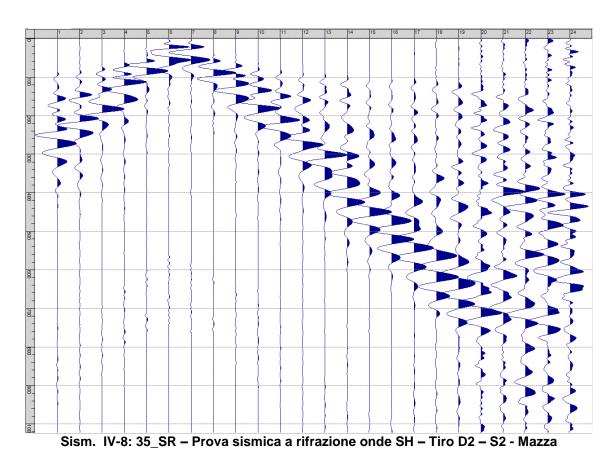

Fig. IV-1: Ripresa fotografica ed inquadramento scala 1:5000



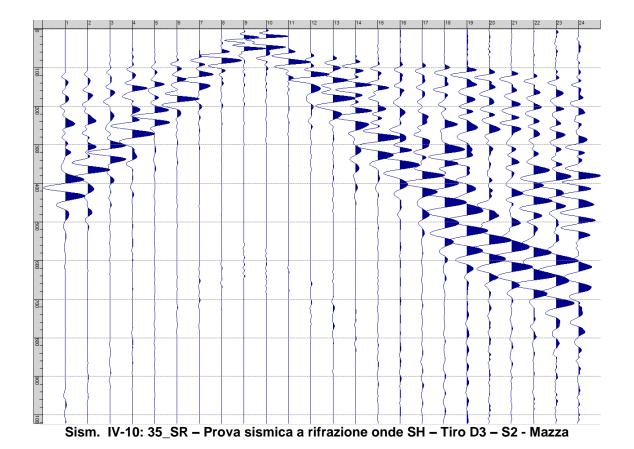


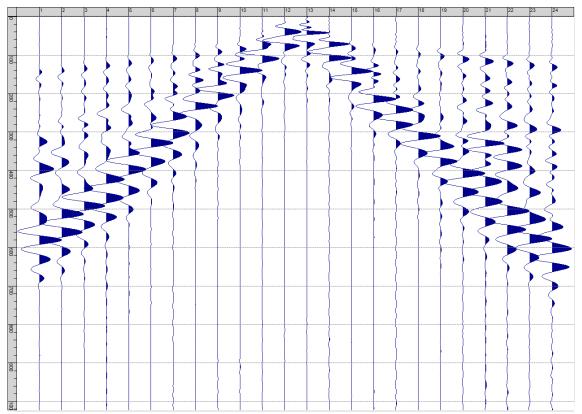
Sism. IV-3: 35_SR - Prova sismica a rifrazione onde SH - Tiro A - S1 - Mazza

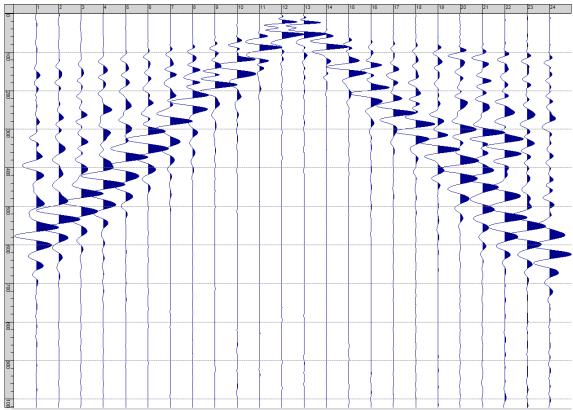


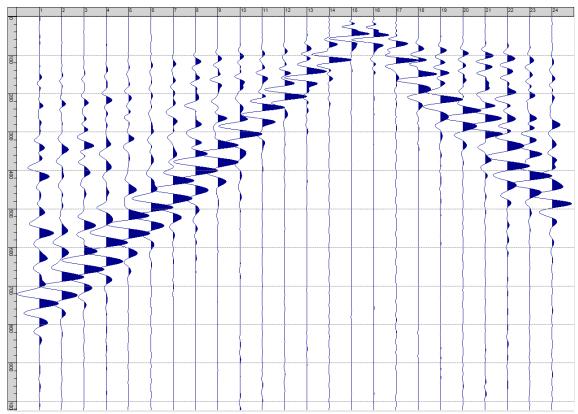

11-1

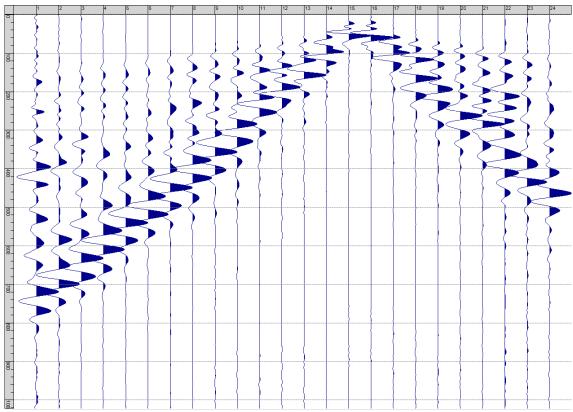


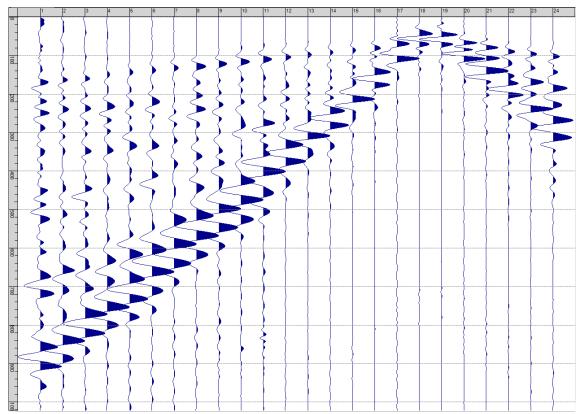

Sism. IV-6: 35_SR - Prova sismica a rifrazione onde SH - Tiro D1 - S2 - Mazza

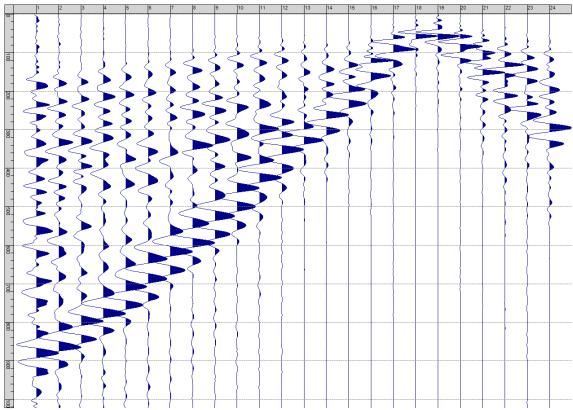


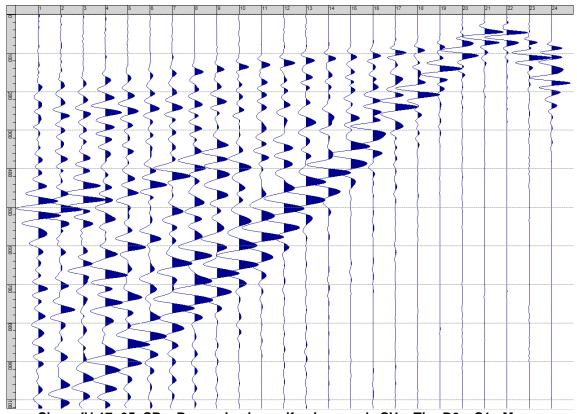

Sism. IV-9: 35_SR - Prova sismica a rifrazione onde SH - Tiro D3 - S1 - Mazza

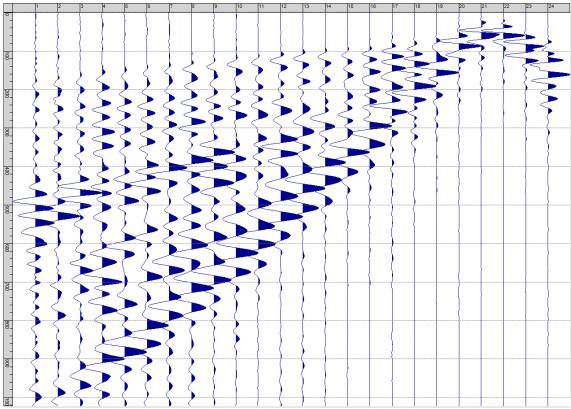

ENKI s.r.l. - info@enki.it - Firenze

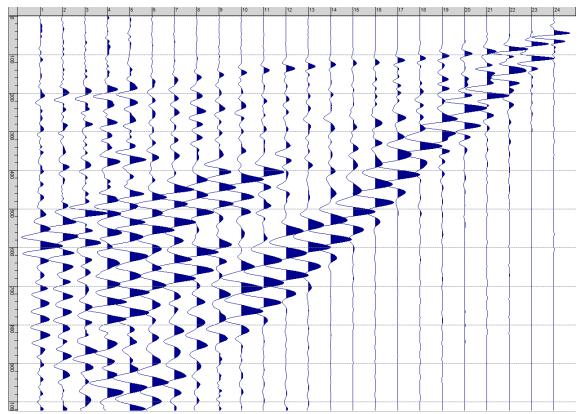

Sism. IV-11: 35_SR - Prova sismica a rifrazione onde SH - Tiro C - S1 - Mazza

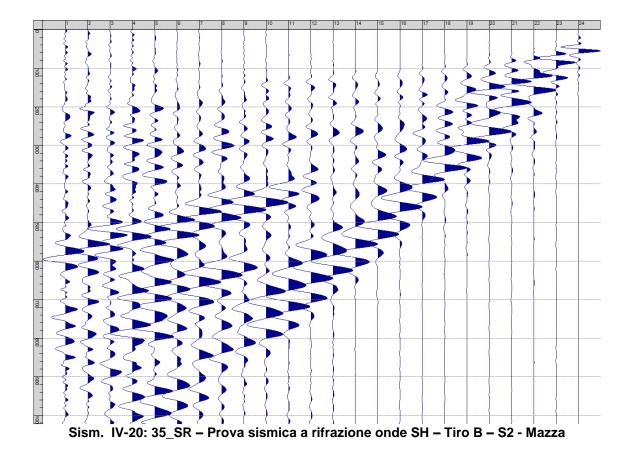

Sism. IV-12: 35_SR - Prova sismica a rifrazione onde SH - Tiro C - S2 - Mazza

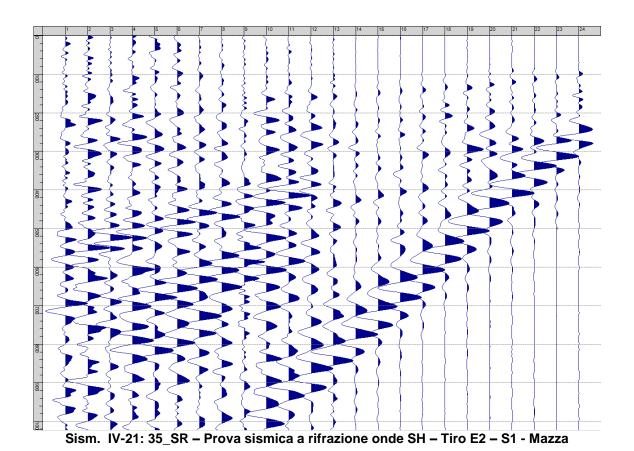

Sism. IV-13: 35_SR - Prova sismica a rifrazione onde SH - Tiro D4 - S1 - Mazza


Sism. IV-14: 35_SR - Prova sismica a rifrazione onde SH - Tiro D4 - S2 - Mazza


Sism. IV-15: 35_SR - Prova sismica a rifrazione onde SH - Tiro D5 - S1 - Mazza


Sism. IV-16: 35_SR - Prova sismica a rifrazione onde SH - Tiro D5 - S2 - Mazza


Sism. IV-17: 35_SR - Prova sismica a rifrazione onde SH - Tiro D6 - S1 - Mazza


Sism. IV-18: 35_SR - Prova sismica a rifrazione onde SH - Tiro D6 - S2 - Mazza

Sism. IV-19: 35_SR - Prova sismica a rifrazione onde SH - Tiro B - S1 - Mazza

ENKI s.r.l. - info@enki.it - Firenze

Sism. IV-22: 35_SR – Prova sismica a rifrazione onde SH – Tiro E2 – S1- Mazza

ALE E RELAZIONE TECNICA INTERPRETATIVA SULLE INDAGINI GEOFISICHE PER LA SIEVE MICROZONAZIONE SISMICA DI LIVELLO 1

Tab. IV-1: Stesa sismica 35_SR ONDE SH - Schema dettagliato

GEOFONI	1	2	3	4	5	9	7	8	6	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
DISTANZA PROGRESSIVA [m]	0	4	8	12	16	20	24	28	32	36	40	44	48	52	26	09	64	89	72	92	80	84	88	92
DISTANZA PARZIALI [m]	-	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4
QUOTA [m]	84.0	84.0	84.0 84.0 84.0 83.9 83.9	83.9	83.9	83.9	83.9	83.9	83.8	83.8	83.8	83.8	83.7	83.7	83.7	83.7	83.7	83.6	83.6	83.6	83.6	93.6	83.5	83.5

Tab. IV-2: Stesa sismica 35_SR ONDE SH - Punti energizzazione (SCOPPIO)

	E1	Α	D1	D2	D3	C	D4	D2	9 0	В	E2
	ESTERNO SX	ESTREMO SX	INTERMEDIO SX	INTERMEDIO SX	INTERMEDIO SX	CENTRALE	INTERMEDIO DX	INTERMEDIO DX	INTERMEDIO DX	ESTREMO SX	ESTERNO DX
POSIZIONE DAL GEOFONO 1 [m]	-22.5	-2.3	11.3	24.8	38.3	51.8	65.3	78.8	92.3	105.8	126
QUOTA [m]	84.1	84.0	83.9	83.9	83.8	83.8	83.7	83.6	83.6	83.5	83.4

VARIANTE GENERALE AL PIANO STRUTTURALE E REGOLAMENTO URBANISTICO - AGGIORNAMENTO QUADRO CONOSCITIVO - COMUNE DI PONTASSIEVE

RELAZIONE TECNICA INTERPRETATIVA SULLE INDAGINI GEOFISICHE PER LA MICROZONAZIONE SISMICA DI LIVELLO 1

Tab. IV-3: Stesa sismica 35_SR ONDE SH- Tabella scoppi - primi arrivi


SCOPPIO B SCOPPIO E2 PRIMO PRIMO ARRIVO [ms] ARRIVO [ms]	513	213	207	201	194	189	185	176	173	158	153	149	145	138	132	130	127	124	120	111	-1000	66	92	88
SCOPPIO B PRIMO ARRIVO [ms]	171	167	-1000	157	-1000	145	141	133	126	122	118	112	107	104	66	101	91	89	83	78	74	64	52	16
	165	161	154	145	140	135	130	123	117	110	105	66	93	06	98	84	92	72	65	51	21	22	53	70
SCOPPIO D5 PRIMO ARRIVO [ms]	151	146	138	130	120	113	109	103	66	91	98	81	77	72	99	62	48	17	14	43	53	92	73	80
SCOPPIO C SCOPPIO D4 SCOPPIO D5 PRIMO PRIMO PRIMO PRIMO PRIMO PRIMO PRIMO [ms] ARRIVO [ms]	140	135	129	122	118	112	66	93	83	62	73	29	09	49	15	14	45	58	99	72	78	82	87	97
SCOPPIO C PRIMO ARRIVO [ms]	127	123	118	105	98	91	85	78	70	59	45	16	16	49	63	99	70	74	62	88	92	26	101	107
SCOPPIO D3 PRIMO ARRIVO [ms]	111	101	92	83	78	71	63	47	10	8	43	9	89	73	78	82	86	91	26	103	108	113	119	126
SCOPPIO D2 PRIMO ARRIVO [ms]	87	80	72	61	48	15	13	51	64	72	81	88	93	94	86	103	105	109	111	118	122	127	133	140
O D1 IO [ms]	59	44	14	13	-1000	61	70	6/	87	91	66	107	111	117	118	120	124	128	134	138	146	151	154	157
SCOPPIO A PRIMO ARRIVO [ms]	14	41	58	89	77	82	63	101	111	116	124	129	132	137	144	149	149	149	151	156	159	161	166	171
SCOPPIO E1 SCOPPIO A SCOPPIO PRIMO PRIMO PRIMO PRINO ARRIVO [ms]	92	83	98	97	101	106	115	122	131	137	141	146	150	155	159	159	161	165	170	174	184	189	188	193
DISTANZA [m]	0	4.5	6	13.5	18	22.5	27	31.5	36	40.5	45	49.5	54	58.5	63	67.5	72	76.5	81	85.5	90	94.5	66	103.5
GEOFONO	1	2	3	4	5	9	7	8	6	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24

Tab. IV-4:Stesa sismica 35_SR ONDE SH - Sezione sismostratigrafica - Rifrattori spessori e velocità

GEOFONI	DICTANZA	QUOTA PROFILO	VELOCITA'	QUOTA	VELOCITA'	QUOTA	VELOCITA'
	DISTANZA	TOPOGRAFICO	STRATO 1	STRATO 1	STRATO 2	STRATO 2	STRATO 3
STAZIONE	[m]	[m]	[m/s]	[m]	[m/s]	[m]	[m/s]
1	0	83.99	197	81.03	462	72.94	851
1.5	2.25	83.98	197	81.00	461	72.82	863
2	4.5	83.97	197	80.97	461	72.71	875
2.5	6.75	83.96	197	80.94	461	72.61	887
3	9	83.95	197	80.90	461	72.52	898
3.5	11.25	83.94	197	80.85	459	72.44	908
4	13.5	83.93	197	80.80	458	72.39	918
4.5	15.75	83.92	197	80.76	458	72.37	928
5	18	83.91	197	80.71	460	72.39	937
5.5	20.25	83.90	197	80.67	463	72.44	946
6	22.5	83.89	197	80.62	466	72.53	953
6.5	24.75	83.88	197	80.58	468	72.66	956
7	27	83.87	197	80.55	469	72.82	955
7.5	29.25	83.86	197	80.52	470	73.02	952
8	31.5	83.85	197	80.51	473	73.26	945
8.5	33.75	83.84	197	80.49	475	73.53	933
9	36	83.82	197	80.48	476	73.83	919
9.5	38.25	83.81	197	80.47	474	74.15	904
10	40.5	83.80	197	80.47	472	74.50	887
10.5	42.75	83.79	197	80.46	471	74.87	869
11	45	83.78	197	80.47	473	75.26	849
11.5	47.25	83.77	197	80.47	476	75.66	829
12	49.5	83.76	197	80.47	479	76.06	809
12.5	51.75	83.75	197	80.46	481	76.46	788
13	54	83.74	197	80.45	483	76.83	768
13.5	56.25	83.73	197	80.45	483	77.18	748
14	58.5	83.72	197	80.44	484	77.48	732
14.5	60.75	83.71	197	80.43	485	77.75	718
15	63	83.70	197	80.42	486	77.97	706
15.5	65.25	83.69	197	80.41	485	78.14	694
16	67.5	83.68	197	80.39	483	78.28	683
16.5	69.75	83.67	197	80.36	479	78.38	675
17	72	83.65	197	80.33	478	78.45	672
17.5	74.25	83.64	197	80.31	477	78.47	673
18	76.5	83.63	197	80.28	478	78.45	677
18.5	78.75	83.62	197	80.26	478	78.39	684
19	81	83.61	197	80.23	478	78.29	694
19.5	83.25	83.60	197	80.20	479	78.16	702
20	85.5	83.59	197	80.18	482	78.00	712
20.5	87.75	83.58	194	80.16	484	77.81	722
21	90	83.57	190	80.14	486	77.60	732
21.5	92.25	83.56	186	80.12	487	77.37	743
22	94.5	83.55	182	80.11	489	77.13	754
22.5	96.75	83.54	178	80.10	489	76.89	766
23	99	83.53	174	80.09	489	76.66	779
23.5	101.25	83.52	171	80.08	489	76.44	791
24	103.5	83.51	167	80.07	489	76.24	803

Fig. IV-2:Stesa sismica 35_SR ONDE SH - Dromocrone - Scala 1:500

RELAZIONE TECNICA INTERPRETATIVA SULLE INDAGINI GEOFISICHE PER LA MICROZONAZIONE SISMICA DI LIVELLO 1

ENKI s.r.l. - info@enki.it - Firenze

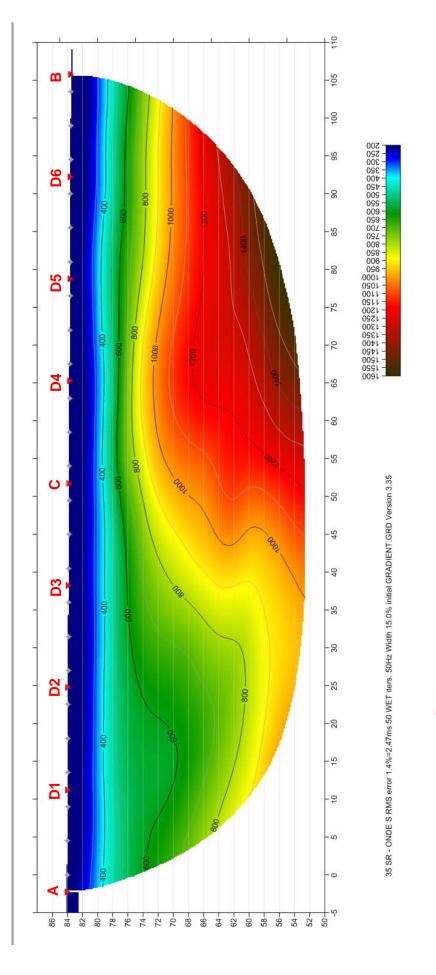


Fig. IV-4: Stesa sismica 35_SR ONDE SH - Tomografia sismica - Scala 1:500

GEOFONI

PUNTI DI ENERGIZZAZIONE

VARIANTE GENERALE AL PIANO STRUTTURALE E	Ξ
REGOLAMENTO URBANISTICO - AGGIORNAMENTO)
QUADRO CONOSCITIVO - COMUNE DI PONTASSIEVE	=

RELAZIONE TECNICA INTERPRETATIVA SULLE INDAGINI GEOFISICHE PER LA MICROZONAZIONE SISMICA DI LIVELLO 1

XXXVI. ALLEGATO GRAFICO: 103_MASW ANALISI MASW ZVF+THF CONGIUNTE
- SISMOGRAMMA - SPETTRO E CURVA DISPERSIONE - RISULTATI
MODELLO - STRATIGRAFIA - PROFILO Vs

RELAZIONE TECNICA INTERPRETATIVA SULLE INDAGINI GEOFISICHE PER LA MICROZONAZIONE SISMICA DI LIVELLO 1

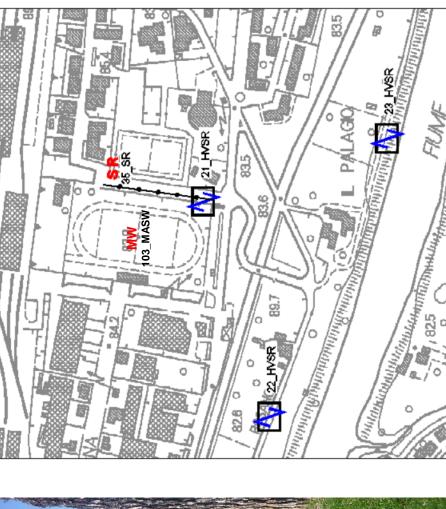


Fig. XXXVI-1: Ripresa fotografica ed inquadramento scala 1:5000

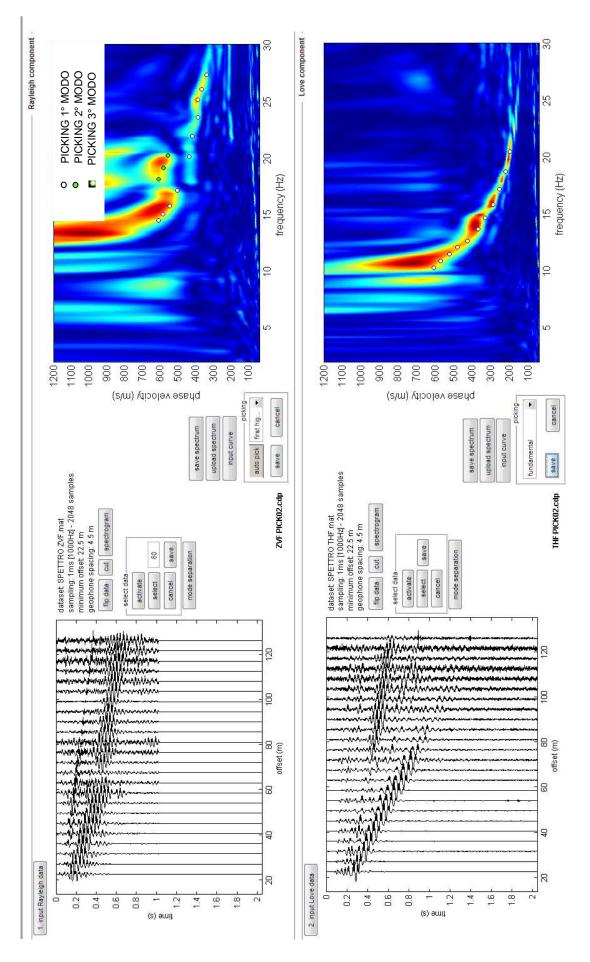


Fig. XXXVI-2: 103 – Analisi MASW ZVF+THF – Sismogrammi (sinistra) - Spettri di velocità con picking

VARIANTE GENERALE AL PIANO STRUTTURALE E REGOLAMENTO URBANISTICO - AGGIORNAMENTO QUADRO CONOSCITIVO - COMUNE DI PONTASSIEVE

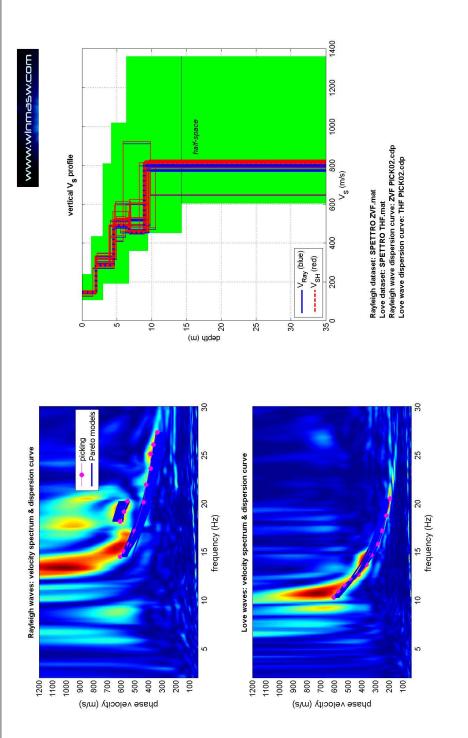


Fig. XXXVI-3: 103 – Analisi MASW ZVF+THF – Risultati del Best Model

Pagina 613

	Vsv Vsh (m/s)	(s/m) (s	ρ (kg/mc)	٧
147				0.43
319				0.42
209	217			0.40
493	501			0.40
788	908	1699		0.36
523	531			

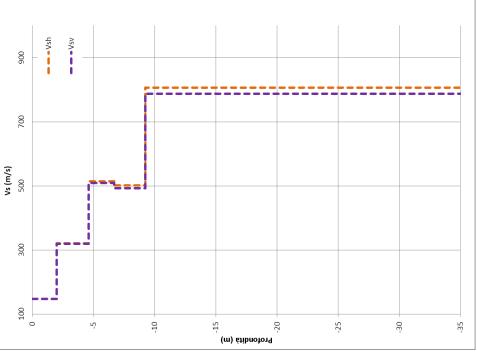


Fig. XXXVI-4: 103 Analisi MASW ZVF+THF - Profili di velocità (Mean Model)

Comm. 897_109.18 Cod. 0897EL0101 Data MAGGIO 2020 Pagina 73 DI 148

Attuazione dell'articolo 11 della legge 24 giugno 2009, n. 77

MICROZONAZIONE SISMICA

Carta geologico-tecnica

Tavola G.02 Pontassieve scala 1: 5.000

Regione Toscana Comune di Pontassieve (FI)

Regione

Regione Toscana – Settore Sismica

Soggetto realizzatore:

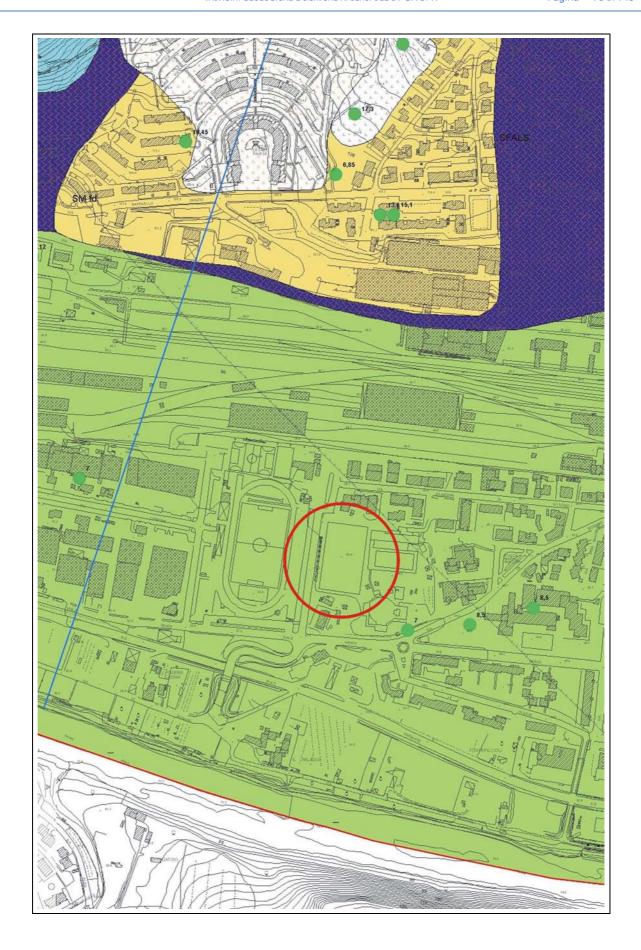
Comune di Pontassieve/Servizio Assetto del Territorio/RUP Dott. Fabio Carli

Professionisti incaricati: Dott. Geol. Eros Aiello Dott. Geol. Gabriele Grandin

Via Andrea del Castagno, 8 - 50132 Firenze tel.055/571393, 055/575954; fax.055/5522329 Data

dicembre 2017

Comm. 897_109.18 Cod. 0897EL0101 Data MAGGIO 2020 Pagina 74 DI 148


Legenda Terreni di copertura

0

REALIZZAZIONE DEGLI SPOGLIATOI E SERVIZI A CORREDO DEL CAMPO
SUSSIDIARIO DA REALIZZARE NELL'AREA SPORTIVA DI PONTASSIEVE
VARIANTE AL REGOLAMENTO URBANISTICO COMUNALE
INDAGINI GEOLOGICHE E SISMICHE AI SENSI DEL DPGR 5/R

Comm. 897_109.18 Cod. 0897EL0101 Data MAGGIO 2020 Pagina 75 DI 148

Comm. 897_109.18 Cod. 0897EL0101 Data MAGGIO 2020 Pagina 76 DI 148

Attuazione dell'articolo 11 della legge 24 giugno 2009, n. 77

MICROZONAZIONE SISMICA

Carta delle microzone omogenee in prospettiva sismica

Tavola G.04 Pontassieve

scala 1: 5.000

Regione Toscana

Comune di Pontassieve (FI)

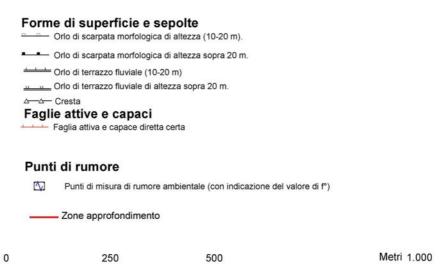
Regione

Regione Toscana - Settore Sismica

Soggetto realizzatore:

Comune di Pontassieve/Servizio Assetto del Territorio/RUP Dott. Fabio Carli

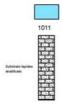
Professionisti incaricati: Dott. Geol. Eros Aiello Dott. Geol. Gabriele Grandin

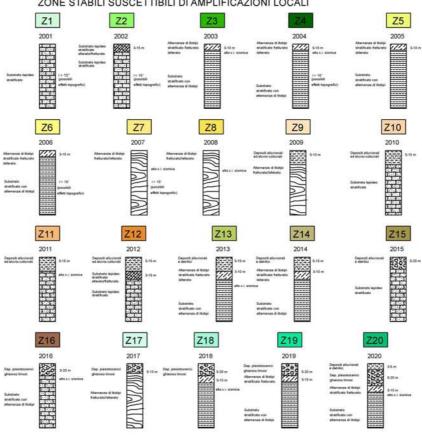


Via Andrea del Castagno, 8 - 50132 Firenze tel.055/571393, 055/575954; fax.055/5522329 Data

dicembre 2017

Comm. 897_109.18 Cod. 0897EL0101 Data MAGGIO 2020 Pagina 77 DI 148


Legenda


Comm. 897_109.18 Cod. 0897EL0101 Data MAGGIO 2020 Pagina 78 DI 148

ZONE STABILI


ZONE STABILI SUSCETTIBILI DI AMPLIFICAZIONI LOCALI

REALIZZAZIONE DEGLI SPOGLIATOI E SERVIZI A CORREDO DEL CAMPO
SUSSIDIARIO DA REALIZZARE NELL'AREA SPORTIVA DI PONTASSIEVE
VARIANTE AL REGOLAMENTO URBANISTICO COMUNALE
INDAGINI GEOLOGICHE E SISMICHE AI SENSI DEL DPGR 5/R

Comm. 897_109.18 Cod. 0897EL0101 Data MAGGIO 2020 Pagina 79 DI 148

Comm. 897_109.18 Cod. 0897EL0101 Data MAGGIO 2020 Pagina 80 DI 148

Attuazione dell'articolo 11 della legge 24 giugno 2009, n. 77

MICROZONAZIONE SISMICA

Sezioni geologico-tecniche con indicazioni MOPS

Tavola G.13

scala 1: 2.000

Regione Toscana Comune di Pontassieve (FI)

Regione

Regione Toscana - Settore Sismica

Soggetto realizzatore:

Comune di Pontassieve/Servizio Assetto del Territorio/RUP Dott. Fabio Carli

Professionisti incaricati: Dott. Geol. Eros Aiello Dott. Geol. Gabriele Grandini

Via Andrea del Castagno, 8 - 50132 Firenza tel.055/571393, 055/578954; fax.055/5522328 Data

dicembre 2017

Comm. 897_109.18 Cod. 0897EL0101 Data MAGGIO 2020 Pagina 81 DI 148

LEGENDA SEZIONI GEOLOGICO-TECNICHE

Depositi correlati a instabilità di versante

Corpo di frana attiva

Corpo di frana quiescente

Corpo di frana inattiva

Terreni di copertura

GMes - Ghiaie limose, miscela di ghiaia, sabbia e limo di ambiente di argine/barra/canale

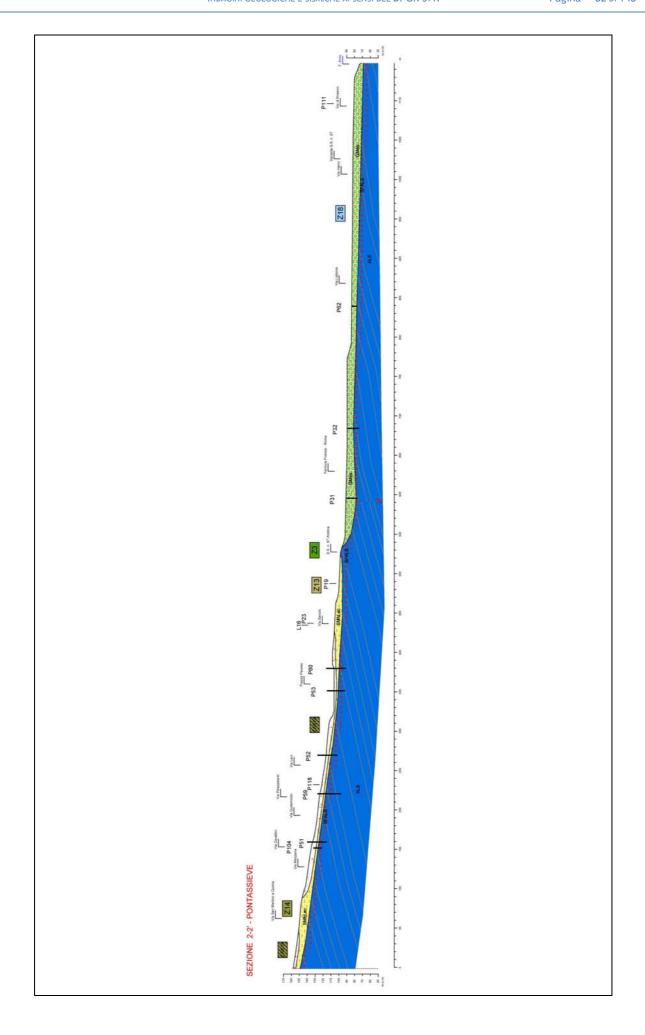
SMes, fd, ec, cd - Sabbie limose, miscela di sabbia e limo di ambiente di argine/barra/canale, falda detritica, eluvio-colluviale e di conoide

Substrato geologico

LPS - Lapideo, stratificato

ALS - Alternanza di litotipi, stratificato

SFLPS - Lapideo, stratificato fratturato / alterato


SFALS - Alternanza di litotipi, stratificato fratturato / alterato

Altre notazioni

P128

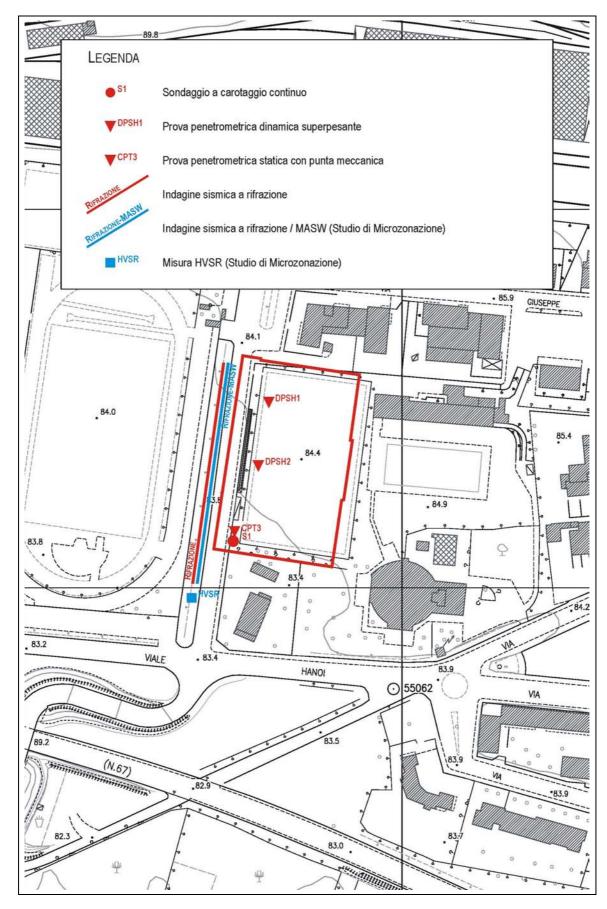
Punto di controllo lito-stratigrafico

Comm. 897_109.18 Cod. 0897EL0101 Data MAGGIO 2020 Pagina 82 DI 148

Comm. 897_109.18

Cod. 0897EL0101

Data MAGGIO 2020


Pagina 83 DI 148

ALLEGATO 4 INDAGINI GEOGNOSTICHE

Comm. 897_109.18 Cod. 0897EL0101 Data MAGGIO 2020 Pagina 84 DI 148

Ubicazione delle indagini geognostiche eseguite per l'area sportiva oggetto di Variante su estratto del Foglio 19L54, in scala 1:2.000, della Carta Tecnica Regionale.

Via Ser Gorello, 11/a 52100 AREZZO

tel. 0575 / 323501 - fax 0575 / 22730 - cell. 0348 / 7007360

COMMITTENTE: CAMPIONI SONDAGGIO: 1 Ghea Engineering & Consulting Srl Pareti sottili Pagina: 1 ٣ Osterberg Quota: Piano campagna Pontassieve (Fi), Via Giuseppe Di Vittorio Carotiere semplice 13/02/2019 Data: Realizzazione nuovo campo sussidiario Carotiere doppio Responsabile: dr. Giuliano Moretti COORDINATE **PIEZOMETRI** Foto: Operatore: sig. Giampaolo Sereni S.P.T. X = 0.00 m Y = 0.00 mSi ATA Tubo aperto Coclea CSG Casagrande Falda: -5,00 m Scala: 1:50 Z = 0,00 mprofondità stratigrafia campioni Pocket Torvane Manovre Rivest. Falda DESCRIZIONE STRATIGRAFICA Kg/cm² Kg/cm² ATA S01-0201-012 Recup tipo n° quota colpi quota 0,00 Suolo limoso sabbioso marrone 0,60 0,60 3.00 3,50 1,50 Limi argillosi marroni compatti 0,30 3,50 2 2,00 3,00 2,50 1,90 3 Sabbie limose e limi sabbiosi marroni da poco a mediamente compatti 3,50 1,00 3.50 0,30 Sabbie medio fini debolmente limose marroni 4,00 0.50 Limi argillosi con trovanti marrone chiaro 3,50 mediamente compatti 4 40 0.40 5 -5,00 16 20 22 5,50 Ghiaie e sabbie grigie marroni chiare da sciolte a mediamente addensate 6 6,80 7.00 8 Argilliti alterate e fratturate grigio azzurre 10,00 10 Carotaggio: Sondaggio a carotaggio continuo note: Sonda tipo: Beretta T41

Rif.: 0898

Comm. 897_109.18 Cod. 0897EL0101 Data MAGGIO 2020 Pagina 86 DI 148

Sondaggio S1 0.0 - 5.0 metri

Sondaggio S1 5.0 - 10.0 metri

Autorizzazione del Ministero delle Infrastrutture e dei Trasporti

Settore A – Prove di laboratorio su terre

Decreto 2436 del 14/03/2013 – ART. 59 DPR 380/2001 – Circolare 7618/STC 2010

LABOTER snc di Paolo Tognelli e C. Lab. Geotecnico - C.S.LL.PP. Decr. 2436/13

Committente: GHEA ENGINEERING & CONSULTING s.r.l.

Cantiere: Pontassieve (FI)

Verbale Accettazione n°: 87 del 19/02/2019

Data Certificazione: 27/03/2019

Campioni n°:

Certificati da n° a n° : 01359 a 01367

Riferimento				Caratte	Caratteristiche fisiche	fisiche				Granulometria	ometria		Compr. Taglio diretto	Taglio	liretto
Sond. Camp. Profondità W $\frac{\gamma}{n}$	W %	κÑ	, m³	$\begin{array}{c cccc} \gamma & \gamma_{\rm sec} & \gamma_{\rm sat} \\ kN/m^3 & kN/m^3 & kN/m^3 \end{array}$	$\gamma_{sat} \\ kN/m^3$	Indice	Indice Poros. Sat. vuoti % %	Sat.	Ghiaia %	Sabbia %	Limo %	Ghiaia Sabbia Limo Argilla % % % %	σ kPa	φ.	С
1.5-1.8 21,0 20,2 16,7 20,3 0,58 36,8 97,2 0,1 9,4 43,6 46,9 256 24,7 17	21,0 20,3	20,3		16,7	20,3	0,58	36,8	97,2	0,1	9,4	43,6	46,9	256	24,7	17
3.5-3.8 21.3 20.0 16.5 20.2 0.60 37.6 95.6 0.9 42.7 29.5 26.9	21.3 20.0	20.0		16.5	20.2	09.0	37.6	92.6	6.0	42.7	29.5	26.9		27.8 16	16

Autorizzazione del MINISTERO DELLE INFRASTRUTTURE E DEI TRASPORTI

Settore A - Prove di Laboratorio su terre Decreto 2436 del 14/03/2013 - Art. 59 DPR 380/2001 - Circolare 7618/STC 2010

COMMITTENTE: GHEA ENGINEERING & CONSULTING s.r.l.

RIFERIMENTO: Pontassieve (FI)

SONDAGGIO: 1 CAMPIONE: 1 PROFONDITA': m 1.5-1.8

CARATTERISTICHE FISICHE

Umidità naturale	21,0	%
Peso di volume	20,2	kN/m³
Peso di volume secco	16,7	kN/m³
Peso di volume saturo	20,3	kN/m³
Peso specifico	26,5	kN/m³
Indice dei vuoti	0,583	
Porosità	36,8	%
Grado di saturazione	97,2	%
Limite di liquidità		%
Limite di plasticità		%
Indice di plasticità		%
Indice di consistenza		
Passante al set. nº 40		
Limite di ritiro		%
CNR-UNI 10006/00		

ANALISI GRANULOMETRICA

Ghiaia	0,1	%
Sabbia	9,4	%
Limo	43,6	%
Argilla	46,9	%
D 10	0,000279	mm
D 50	0,006787	mm
D 60	0,014172	mm
D 90	0,073115	mm
Passante set. 10	99,4	%
Passante set. 42	98,2	%
Passante set. 200	90,5	%

PERMEABILITA'

Coefficiente k cm/sec

COMPRESSIONE

σ	256	kPa
cu	128	kPa
σ_{Rim}		kPa
c _{u Rim}		kPa

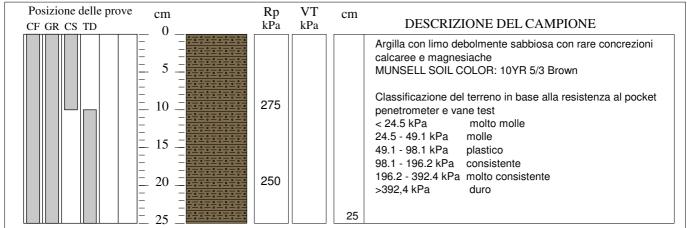
TAGLIO DIRETTO

Prova co	nsolidata-len	ıta
c'	16,8	kPa
φ'	24,7	0
C' _{Res}		kPa
ΨRes		0

COMPRESSIONE TRIASSIALE

C.D.	Cd	kPa	фа	0
C.U.	C'cu	kPa	¢ 'cu	0
0.0.	C cu	kPa	φ _{cu}	0
U.U.	Cu	kPa	фu	0

PROVA EDOMETRICA


♂ kPa	E kPa	Cv cm²/sec	k cm/sec

FOTOGRAFIA

OSSERVAZIONI

Tipo di campione: Cilindrico Qualità del campione: Q 5

${\bf Autorizzazione\ del\ MINISTERO\ DELLE\ INFRASTRUTTURE\ E\ DEI\ TRASPORTI}$

Settore A - Prove di Laboratorio su terre Decreto 2436 del 14/03/2013 - Art. 59 DPR 380/2001 - Circolare 7618/STC 2010

CERTIFICATO DI PROVA N°: 01359 Pagina 1/1		DATA DI EMISSIONE:	27/03/19	Inizio analisi:	01/03/19
VERBALE DI ACCETTAZIONE N°: 87 del 19/02/19		Apertura campione:	01/03/19	Fine analisi:	02/03/19
COMMITTENTE: GHEA ENGINEERING & CONSULTING	G :	s.r.l.			
RIFERIMENTO: Pontassieve (FI)					
SONDAGGIO: 1 CAMPIONE	Ξ:	1	PRC	FONDITA': m	1.5-1.8
CONTENUTO D'ACQU	JΔ	ALLO STATO NATURAL	<u>E</u>		
Modalità di prova:	N	orma ASTM D 2216-10			

Wn = contenuto d'acqua allo stato naturale = 21,0 %

Omogeneo

Struttura del materiale:

☐ Caotico

Temperatura di essiccazione: 110 °C

${\bf Autorizzazione~del~MINISTERO~DELLE~INFRASTRUTTURE~E~DEI~TRASPORTI}$

Settore A - Prove di Laboratorio su terre Decreto 2436 del 14/03/2013 - Art. 59 DPR 380/2001 - Circolare 7618/STC 2010

CERTIFICATO DI PROVA N°: 01360Pagina 1/1DATA DI EMISSIONE: 27/03/19Inizio analisi: 01/03/19VERBALE DI ACCETTAZIONE N°: 87 del 19/02/19Apertura campione: 01/03/19Fine analisi: 01/03/19

COMMITTENTE: GHEA ENGINEERING & CONSULTING s.r.l.

RIFERIMENTO: Pontassieve (FI)

SONDAGGIO: 1 CAMPIONE: 1 PROFONDITA': m 1.5-1.8

PESO DI VOLUME ALLO STATO NATURALE

Modalità di prova: Norma BS 1377 T 15/E

Determinazione eseguita mediante fustella tarata

Peso di volume allo stato naturale = 20,2 kN/m³

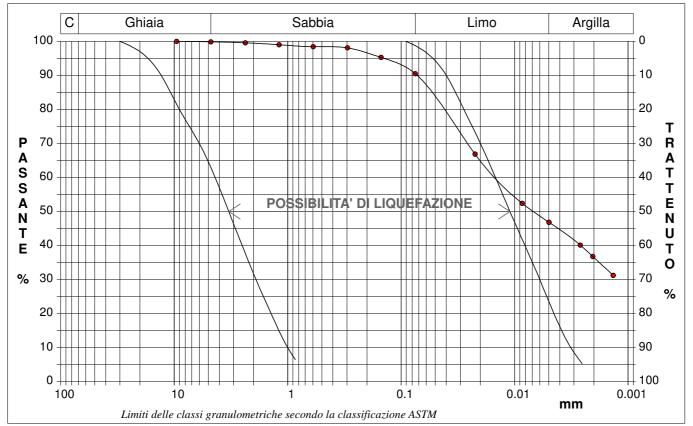
${\bf Autorizzazione~del~MINISTERO~DELLE~INFRASTRUTTURE~E~DEI~TRASPORTI}$

Settore A - Prove di Laboratorio su terre Decreto 2436 del 14/03/2013 - Art. 59 DPR 380/2001 - Circolare 7618/STC 2010

CERTIFICATO DI PROVA N°:01361Pagina 1/1VERBALE DI ACCETTAZIONE N°:87 del 19/02/19

DATA DI EMISSIONE: 27/03/19 Inizio analisi: 11/03/19 Apertura campione: 01/03/19 Fine analisi: 14/03/19

COMMITTENTE: GHEA ENGINEERING & CONSULTING s.r.l.


RIFERIMENTO: Pontassieve (FI)

SONDAGGIO: 1 CAMPIONE: 1 PROFONDITA': m 1.5-1.8

ANALISI GRANULOMETRICA

Modalità di prova: Norma ASTM D 422-63

Ghiaia	0,1 %	Passante set	accio 10 (2 mm)	99.4 %	D ₁₀	0,00028 mm
Sabbia	9,4 %		accio 40 (0.42 mm)	98,2 %	D ₃₀	mm
Limo	43,6 %		,	ŕ	D ₅₀	0,00679 mm
Argilla	46,9 %	Passante set	accio 200 (0.075 mm)	90,5 %	D ₆₀	0,01417 mm
Coefficiente o	di uniformità	50,84	Coefficiente di curvatura		D ₉₀	0,07312 mm

Diametro mm	Passante %								
9,5200	100,00	0,2970	98,09	0,0050	46,81				
4,7500	99,87	0,1500	95,28	0,0026	40,12				
2,3600	99,58	0,0750	90,50	0,0020	36,78				
1,1900	99,00	0,0223	66,85	0,0014	31,22				
0,5950	98,43	0,0086	52,38						

Autorizzazione del MINISTERO DELLE INFRASTRUTTURE E DEI TRASPORTI

Settore A - Prove di Laboratorio su terre Decreto 2436 del 14/03/2013 - Art. 59 DPR 380/2001 - Circolare 7618/STC 2010

CERTIFICATO DI PROVA N°:01362Pagina 1/1VERBALE DI ACCETTAZIONE N°:87 del 19/02/19

DATA DI EMISSIONE: 27/03/19 Inizio analisi: 04/03/19 Apertura campione: 01/03/19 Fine analisi: 05/03/19

COMMITTENTE: GHEA ENGINEERING & CONSULTING s.r.l.

RIFERIMENTO: Pontassieve (FI)

SONDAGGIO: 1 CAMPIONE: 1 PROFONDITA': m 1.5-1.8

PROVA DI COMPRESSIONE AD ESPANSIONE LATERALE LIBERA

Modalità di prova: Norma ASTM D 2166-06

Provino nº:	1	2	3
Condizione del provino:	Indisturbato		
Velocità di deformazione (mm/min):	1,000		
Altezza (cm):	7,62		
Sezione (cm²):	11,58		
Peso di volume (kN/m³):	19,3		
Umidità naturale (%):	22,7		

${\bf Autorizzazione~del~MINISTERO~DELLE~INFRASTRUTTURE~E~DEI~TRASPORTI}$

Settore A - Prove di Laboratorio su terre Decreto 2436 del 14/03/2013 - Art. 59 DPR 380/2001 - Circolare 7618/STC 2010

 CERTIFICATO DI PROVA N°:
 01362
 Pagina 0/1
 DATA DI EMISSIONE:
 27/03/19
 Inizio analisi:
 04/03/19

 VERBALE DI ACCETTAZIONE N°:
 87 del 19/02/19
 Apertura campione:
 01/03/19
 Fine analisi:
 05/03/19

COMMITTENTE: GHEA ENGINEERING & CONSULTING s.r.l.

RIFERIMENTO: Pontassieve (FI)

SONDAGGIO: 1 CAMPIONE: 1 PROFONDITA': m 1.5-1.8

PROVA DI COMPRESSIONE AD ESPANSIONE LATERALE LIBERA

Modalità di prova: Norma ASTM D 2166-06

	Provi	no 1			Prov	ino 2			Prov	ino 3	
Deform.	Tensione										
%	kPa										
0,35	62,0	12,82	254,4								
0,68	94,3	13,15	255,0								
1,01	119,7	13,47	254,8								
1,33	138,0	13,80	255,3								
1,66	152,8	14,13	255,8								
1,99	164,2	14,46	255,6								
2,32	174,6	14,79	255,3								
2,65	183,3	15,11	255,1								
2,97	189,3	15,44	254,8								
3,30	195,4	15,77	254,6								
3,63	198,9	16,10	254,3								
3,96	204,0	16,43	254,0								
4,29	208,3	16,62	254,1								
4,62	211,7	16,97	253,1								
4,94	215,9	17,30	251,4								
5,27	218,4	17,63	248,9								
5,60	221,7	17,96	246,5								
5,93	224,2	18,29	242,7								
6,26	227,5										
6,58	229,9										
6,91	232,3										
7,24	233,9										
7,57	235,4										
7,90	237,0										
8,22	239,3										
8,55	240,8										
8,88	242,3										
9,21	243,0										
9,54	244,5										
9,86	245,9										
10,19	247,4										
10,52	248,8										
10,85	249,4										
11,18	250,8										
11,50	251,4										
11,83	252,8										
12,16	252,6										
12,49	253,9										

to N° 111177-2012-AQ-ITA-ACI UNI EN ISO 9001:2015 (ISO 9001:2015) he di Laboratorio su terre (S

Autorizzazione del MINISTERO DELLE INFRASTRUTTURE E DEI TRASPORTI

Settore A - Prove di Laboratorio su terre Decreto 2436 del 14/03/2013 - Art. 59 DPR 380/2001 - Circolare 7618/STC 2010

CERTIFICATO DI PROVA Nº: 01363 Pagina 1/4 DATA DI EMISSIONE: 27/03/19 Inizio analisi: 24/03/19 VERBALE DI ACCETTAZIONE Nº: 87 del 19/02/19 Apertura campione: 01/03/19 Fine analisi: 26/03/19

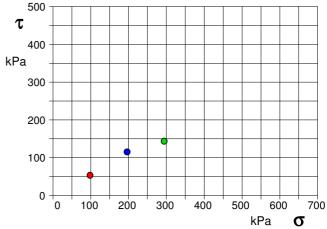
COMMITTENTE: GHEA ENGINEERING & CONSULTING s.r.l.

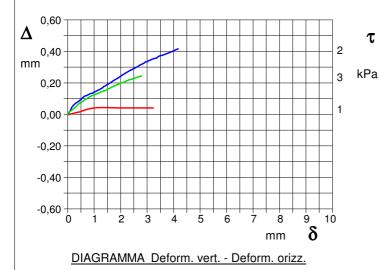
RIFERIMENTO: Pontassieve (FI)

SONDAGGIO: PROFONDITA': m CAMPIONE: 1.5-1.8

PROVA DI TAGLIO DIRETTO

Modalità di prova: Norma ASTM D 3080-04


Provino nº:	-	1		2		3	
Condizione del provino:	Indisturbato		Indisturbato		Indisturbato		
Pressione verticale (kPa):	9	98 196		96	294		
Tensione a rottura (kPa):	5	54		115		144	
Deformazione orizzontale a rottura (mm):	1,5	1,30		2,71		50	
Deformazione verticale a rottura (mm):	0,0	04	0,31		0,	23	
Umidità iniziale e umidità finale (%):		24,4		23,7		21,6	
Peso di volume iniziale e finale (kN/m³):	20,3	25,9	20,1	26,5	20,3	24,7	


τ

DIAGRAMMA

Tensione - Pressione verticale

Tipo di prova: Consolidata - lenta Velocità di deformazione: 0,007 mm / min Tempo di consolidazione (ore): 24

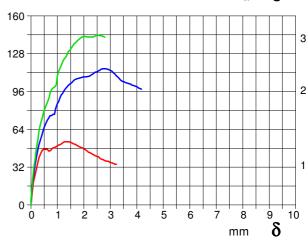


DIAGRAMMA Tensione - Deformaz. orizz.

Autorizzazione del MINISTERO DELLE INFRASTRUTTURE E DEI TRASPORTI Settore A - Prove di Laboratorio su terre

Decreto 2436 del 14/03/2013 - Art. 59 DPR 380/2001 - Circolare 7618/STC 2010

CERTIFICATO DI PROVA N°:01363Pagina 2/4DATA DI EMISSIONE:27/03/19Inizio analisi:24/03/19VERBALE DI ACCETTAZIONE N°:87 del 19/02/19Apertura campione:01/03/19Fine analisi:26/03/19

COMMITTENTE: GHEA ENGINEERING & CONSULTING s.r.l.

RIFERIMENTO: Pontassieve (FI)

SONDAGGIO: 1 CAMPIONE: 1 PROFONDITA': m 1.5-1.8

PROVA DI TAGLIO DIRETTO

Modalità di prova: Norma ASTM D 3080-04

	Provino 1			Provino 2			Provino 3	
Spostam. mm	Tensione kPa	Deform. vert. mm	Spostam. mm	Tensione kPa	Deform. vert. mm	Spostam. mm	Tensione kPa	Deform. vert. mm
0,047	10,7	0,00	0,033	11,4	0,01	0,029	12,5	0,01
0,150	24,9	0,00	0,108	26,1	0,03	0,110	31,4	0,02
0,260	36,1	0,01	0,200	39,7	0,05	0,206	48,1	0,03
0,376	43,8	0,01	0,299	50,6	0,07	0,302	62,5	0,05
0,493	47,2	0,02	0,412	58,9	0,08	0,413	72,5	0,07
0,614	47,2	0,02	0,506	65,8	0,10	0,514	80,8	0,08
0,740	46,0	0,03	0,620	71,7	0,11	0,622	86,9	0,09
0,860	48,5	0,04	0,721	75,6	0,12	0,733	95,6	0,10
0,987	49,8	0,04	0,839	76,7	0,13	0,837	98,9	0,11
1,109	51,1	0,04	0,940	81,9	0,13	0,955	101,7	0,12
1,236	53,1	0,04	1,055	87,8	0,15	1,050	113,1	0,13
1,361	53,4	0,04	1,142	92,8	0,15	1,152	118,3	0,14
1,482	53,1	0,04	1,259	96,9	0,16	1,251	123,3	0,14
1,609	51,7	0,04	1,368	100,0	0,18	1,361	126,9	0,15
1,736 1,858	50,4 49,0	0,04 0,04	1,485 1,592	102,5 104,7	0,19 0,20	1,476 1,577	131,1 134,4	0,16 0,17
1,980	49,0	0,04	1,688	104,7	0,20	1,696	137,5	0,17
2,106	46,0	0,04	1,809	100,4	0,21	1,808	140,0	0,18
2,100	44,2	0,04	1,921	107,2	0,22	1,933	142,0	0,18
2,358	42,5	0,04	2,034	107,3	0,25	2,039	142,5	0,19
2,484	41,2	0,04	2,139	108,6	0,26	2,146	142,1	0,20
2,605	39,5	0,04	2,259	109,7	0,27	2,274	142,2	0,22
2,734	38,2	0,04	2,371	111,4	0,28	2,371	142,5	0,22
2,859	36,9	0,04	2,485	112,5	0,29	2,498	143,6	0,23
2,980	36,1	0,04	2,595	113,9	0,30	2,619	143,2	0,24
3,110	35,2	0,04	2,710	115,3	0,31	2,733	142,5	0,24
3,233	34,4	0,04	2,810	115,3	0,32	,		,
			2,946	114,4	0,33			
			3,056	113,3	0,34			
			3,169	110,8	0,35			
			3,305	107,8	0,36			
			3,403	105,3	0,37			
			3,529	104,2	0,37			
			3,648	103,1	0,38			
			3,768	102,2	0,39			
			3,873	101,1	0,39			
			4,005	100,0	0,40			
			4,100	98,6	0,41			

ato Nº 111177-2012-AQ-ITA-ACC UNI EN ISO 9001:2015 (ISO 9001:2015) che di Laboratorio su terre (S

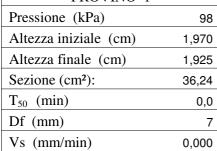
Autorizzazione del MINISTERO DELLE INFRASTRUTTURE E DEI TRASPORTI

Settore A - Prove di Laboratorio su terre Decreto 2436 del 14/03/2013 - Art. 59 DPR 380/2001 - Circolare 7618/STC 2010

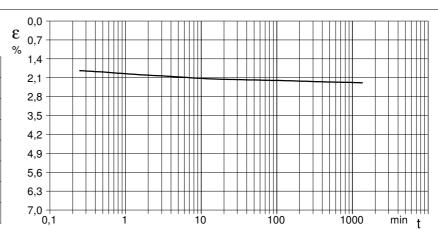
CERTIFICATO DI PROVA Nº: 01363 Pagina 3/4 VERBALE DI ACCETTAZIONE Nº: 87 del 19/02/19

DATA DI EMISSIONE: 27/03/19 Inizio analisi: 24/03/19 Apertura campione: 01/03/19 Fine analisi: 26/03/19

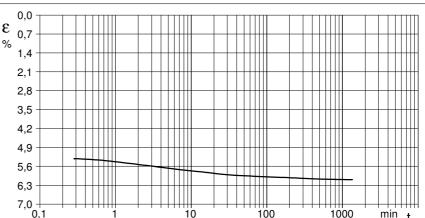
COMMITTENTE: GHEA ENGINEERING & CONSULTING s.r.l.


RIFERIMENTO: Pontassieve (FI)

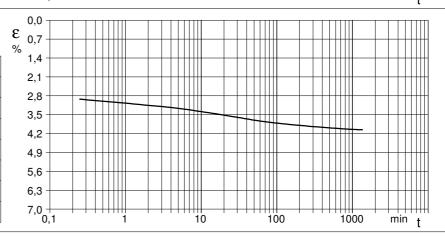
SONDAGGIO: CAMPIONE: PROFONDITA': m 1.5-1.8


PROVA DI TAGLIO DIRETTO - FASE DI CONSOLIDAZIONE

Modalità di prova: Norma ASTM D 3080-04



Diagramma


Diagramma TEMPO - CEDIMENTO

PROVINO 2	
Pressione (kPa)	196
Altezza iniziale (cm)	2,000
Altezza finale (cm)	1,878
Sezione (cm²):	36,00
T ₅₀ (min)	0,0
Df (mm)	7
Vs (mm/min)	0,000

Diagramma TEMPO - CEDIMENTO

294
000
919
5,00
0,0
7
000

Vs = Velocità stimata di prova Df = Deformazione a rottura stimata

 $tf = 50 \times T_{50}$

Vs = Df / tf

Autorizzazione del MINISTERO DELLE INFRASTRUTTURE E DEI TRASPORTI Settore A - Prove di Laboratorio su terre

Settore A - Prove di Laboratorio su terre

Decreto 2436 del 14/03/2013 - Art. 59 DPR 380/2001 - Circolare 7618/STC 2010

 CERTIFICATO DI PROVA N°:
 01363
 Pagina 4/4
 DATA DI EMISSIONE:
 27/03/19
 Inizio analisi:
 24/03/19

 VERBALE DI ACCETTAZIONE N°:
 87 del 19/02/19
 Apertura campione:
 01/03/19
 Fine analisi:
 26/03/19

COMMITTENTE: GHEA ENGINEERING & CONSULTING s.r.l.

RIFERIMENTO: Pontassieve (FI)

SONDAGGIO: 1 CAMPIONE: 1 PROFONDITA': m 1.5-1.8

PROVA DI TAGLIO DIRETTO - FASE DI CONSOLIDAZIONE

Modalità di prova: Norma ASTM D 3080-04

	Provino 1			Provino 2			Provino 3	
Tempo	Cedim.	Cedim.	Tempo	Cedim.	Cedim.	Tempo	Cedim.	Cedim.
minuti	mm/100	%	minuti	mm/100	%	minuti	mm/100	%
0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
0,25	36,20	1,84	0,28	106,30	5,32	0,25	58,50	2,93
0,50	37,20	1,89	0,53	107,12	5,36	0,50	60,10	3,01
1,00	38,40	1,95	1,05	108,77	5,44	1,00	61,50	3,08
2,00	39,50	2,01	2,05	110,68	5,53	2,00	63,10	3,16
4,00	40,40	2,05	4,05	112,79	5,64	4,00	64,70	3,24
8,00	41,50	2,11	8,05	114,80	5,74	8,00	66,92	3,35
15,00	42,30	2,15	15,05	116,39	5,82	15,00	69,23	3,46
30,00	42,70	2,17	30,05	118,24	5,91	30,00	71,96	3,60
60,00	43,10	2,19	60,05	119,20	5,96	60,00	74,71	3,74
120,00	43,41	2,20	120,05	119,99	6,00	120,00	76,73	3,84
240,00	43,94	2,23	240,05	120,63	6,03	240,00	78,36	3,92
480,00	44,45	2,26	480,05	121,42	6,07	480,00	79,70	3,99
900,00	44,77	2,27	900,05	121,74	6,09	900,00	80,80	4,04
1200,00	44,96	2,28	1200,05	121,90	6,10	1200,00	81,10	4,06
1427,62	45,10	2,29	1440,05	121,90	6,10	1440,00	81,20	4,06

COMMITTENTE: GHEA ENGINEERING & CONSULTING s.r.l.

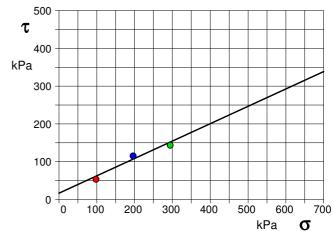
RIFERIMENTO: Pontassieve (FI)

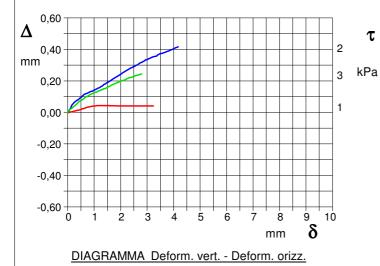
SONDAGGIO: CAMPIONE: 1 PROFONDITA': m 1.5-1.8

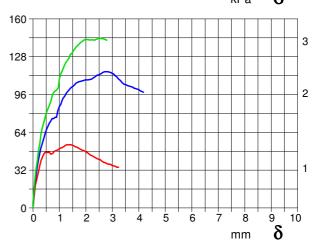
PROVA DI TAGLIO DIRETTO

Modalità di prova: Norma ASTM D 3080-04

Provino n°:	1		2)	;	3
Condizione del provino:	Indisturbato		Indisturbato		Indisturbato	
Pressione verticale (kPa):	98	98 196		16	294	
Tensione a rottura (kPa):	54		115		144	
Deformazione orizzontale a rottura (mm):	1,30		2,71		2,	50
Deformazione verticale a rottura (mm):	0,04		0,31		0,	23
Umidità iniziale e umidità finale (%):		24,4		23,7		21,6
Peso di volume iniziale e finale (kN/m³):	20,3	25,9	20,1	26,5	20,3	24,7


τ


DIAGRAMMA


Tensione - Pressione verticale

Coesione: 16,8 kPa Angolo di attrito interno: 24,7 °

Tipo di prova: Consolidata - lenta Velocità di deformazione: 0,007 mm / min Tempo di consolidazione (ore):

Autorizzazione del MINISTERO DELLE INFRASTRUTTURE E DEI TRASPORTI

Settore A - Prove di Laboratorio su terre Decreto 2436 del 14/03/2013 - Art. 59 DPR 380/2001 - Circolare 7618/STC 2010

COMMITTENTE: GHEA ENGINEERING & CONSULTING s.r.l.

RIFERIMENTO: Pontassieve (FI)

SONDAGGIO: 1 CAMPIONE: 2 PROFONDITA': m 3.5-3.8

CARATTERISTICHE FISICHE

Umidità naturale	21,3	%
Peso di volume	20,0	kN/m³
Peso di volume secco	16,5	kN/m³
Peso di volume saturo	20,2	kN/m³
Peso specifico	26,5	kN/m³
Indice dei vuoti	0,602	
Porosità	37,6	%
Grado di saturazione	95,6	%
Limite di liquidità		%
Limite di plasticità		%
Indice di plasticità		%
Indice di consistenza		
Passante al set. nº 40		
Limite di ritiro		%
CNR-UNI 10006/00		

ANALISI GRANULOMETRICA

01::	2.0	0/
Ghiaia	0,9	%
Sabbia	42,7	%
Limo	29,5	%
Argilla	26,9	%
D 10		mm
D 50	0,049415	mm
D 60	0,091937	mm
D 90	0,285842	mm
Passante set. 10	98,1	%
Passante set. 42	93,4	%
Passante set. 200	56,4	%

PERMEABILITA'

Coefficiente k cm/sec

COMPRESSIONE

σ	kPa
c _u	kPa
σ_{Rim}	kPa
c _{u Rim}	kPa

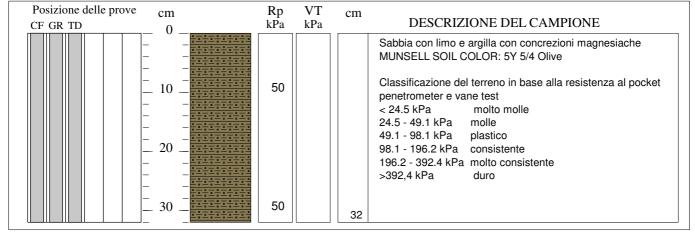
TAGLIO DIRETTO

Prova consolidata-lenta					
c'	15,9	kPa			
φ'	27,8	0			
C' _{Res}		kPa			
φ' _{Res}		0			

COMPRESSIONE TRIASSIALE

C.D.	Cd	kPa	фа	0
C.U.	C'cu	kPa	¢ 'cu	0
0.0.	C cu	kPa	φ _{cu}	0
U.U.	Cu	kPa	фu	0

PROVA EDOMETRICA


♂ kPa	E kPa	Cv cm²/sec	k cm/sec

FOTOGRAFIA

OSSERVAZIONI

Tipo di campione: Cilindrico Qualità del campione: Q 5

Autorizzazione del MINISTERO DELLE INFRASTRUTTURE E DEI TRASPORTI

Settore A - Prove di Laboratorio su terre Decreto 2436 del 14/03/2013 - Art. 59 DPR 380/2001 - Circolare 7618/STC 2010

CERTIFICATO DI PROVA N°: 01364	Pagina 1/1	DATA DI EMISSIONE:	27/03/19	Inizio analisi:	01/03/19
VERBALE DI ACCETTAZIONE N°: 87 de	I 19/02/19	Apertura campione:	01/03/19	Fine analisi:	02/03/19
COMMITTENTE: GHEA ENGINEERING	& CONSULTING	s.r.l.			
RIFERIMENTO: Pontassieve (FI)					
SONDAGGIO: 1	CAMPIONE:	2	PRC	FONDITA': m	3.5-3.8
CONTI	ENUTO D'ACQUA	A ALLO STATO NATURAL	<u>.E</u>		
Мо	dalità di prova: N	lorma ASTM D 2216-10			

Wn = contenuto d'acqua allo stato naturale = 21,3 %

Omogeneo

Struttura del materiale:

☐ Caotico

Temperatura di essiccazione: 110 °C

${\bf Autorizzazione~del~MINISTERO~DELLE~INFRASTRUTTURE~E~DEI~TRASPORTI}$

Settore A - Prove di Laboratorio su terre Decreto 2436 del 14/03/2013 - Art. 59 DPR 380/2001 - Circolare 7618/STC 2010

 CERTIFICATO DI PROVA N°:
 01365
 Pagina 1/1
 DATA DI EMISSIONE:
 27/03/19
 Inizio analisi:
 01/03/19

 VERBALE DI ACCETTAZIONE N°:
 87 del 19/02/19
 Apertura campione:
 01/03/19
 Fine analisi:
 01/03/19

COMMITTENTE: GHEA ENGINEERING & CONSULTING s.r.l.

RIFERIMENTO: Pontassieve (FI)

SONDAGGIO: 1 CAMPIONE: 2 PROFONDITA': m 3.5-3.8

PESO DI VOLUME ALLO STATO NATURALE

Modalità di prova: Norma BS 1377 T 15/E

Determinazione eseguita mediante fustella tarata

Peso di volume allo stato naturale = 20,0 kN/m³

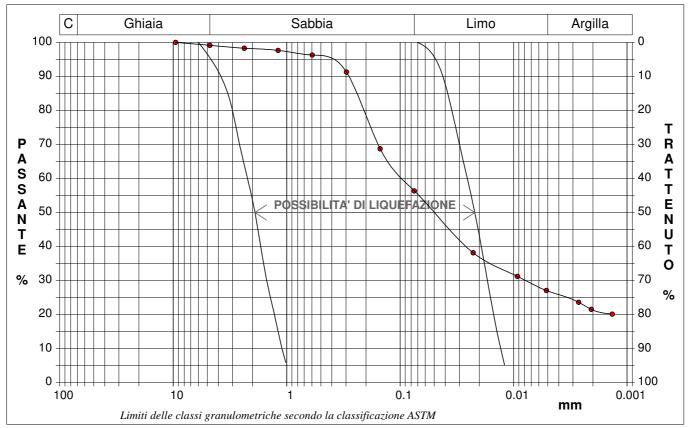
${\bf Autorizzazione~del~MINISTERO~DELLE~INFRASTRUTTURE~E~DEI~TRASPORTI}$

Settore A - Prove di Laboratorio su terre Decreto 2436 del 14/03/2013 - Art. 59 DPR 380/2001 - Circolare 7618/STC 2010

CERTIFICATO DI PROVA N°:01366Pagina 1/1VERBALE DI ACCETTAZIONE N°:87 del 19/02/19

DATA DI EMISSIONE: 27/03/19 Inizio analisi: 11/03/19
Apertura campione: 01/03/19 Fine analisi: 14/03/19

COMMITTENTE: GHEA ENGINEERING & CONSULTING s.r.l.


RIFERIMENTO: Pontassieve (FI)

SONDAGGIO: 1 CAMPIONE: 2 PROFONDITA': m 3.5-3.8

ANALISI GRANULOMETRICA

Modalità di prova: Norma ASTM D 422-63

Ghiaia	0,9 %	Passante seta	accio 10 (2 mm)	98,1 %	D ₁₀	mm
Sabbia	42,7 %		accio 40 (0.42 mm)	93,4 %	D ₃₀	0,00777 mm
Limo	29,5 %		,	,	D ₅₀	0,04942 mm
Argilla	26,9 %	Passante set	accio 200 (0.075 mm)	56,4 %	D ₆₀	0,09194 mm
Coefficiente d	di uniformità		Coefficiente di curvatura		D ₉₀	0,28584 mm

Diametro mm	Passante %	Diametro mm	Passante %						
9,5200	100,00	0,2970	91,26	0,0051	27,07				
4,7500	99,13	0,1500	68,75	0,0027	23,60				
2,3600	98,27	0,0750	56,36	0,0021	21,52				
1,1900	97,64	0,0227	38,17	0,0013	20,13				
0,5950	96,28	0,0093	31,23						

to N° 111177-2012-AQ-ITA-ACI UNI EN ISO 9001:2015 (ISO 9001:2015) he di Laboratorio su terre (S

Autorizzazione del MINISTERO DELLE INFRASTRUTTURE E DEI TRASPORTI

Settore A - Prove di Laboratorio su terre Decreto 2436 del 14/03/2013 - Art. 59 DPR 380/2001 - Circolare 7618/STC 2010

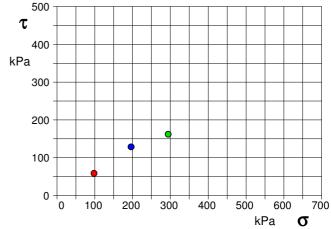
CERTIFICATO DI PROVA Nº: 01367 Pagina 1/4 DATA DI EMISSIONE: 27/03/19 Inizio analisi: 22/03/19 VERBALE DI ACCETTAZIONE N°: 87 del 19/02/19 Apertura campione: 01/03/19 Fine analisi: 24/03/19

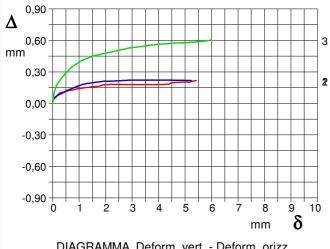
COMMITTENTE: GHEA ENGINEERING & CONSULTING s.r.l.

RIFERIMENTO: Pontassieve (FI)

SONDAGGIO: CAMPIONE: PROFONDITA': m 3.5-3.8

PROVA DI TAGLIO DIRETTO


Modalità di prova: Norma ASTM D 3080-04


Provino n°:		1		2	3			
Condizione del provino:	Indist	urbato	Indist	urbato	Indisturbato			
Pressione verticale (kPa):	9	98 196		196		294		
Tensione a rottura (kPa):	5	9	1:	129		129 162		62
Deformazione orizzontale a rottura (mm):	2,	77	3,	3,55		19		
Deformazione verticale a rottura (mm):	0,	18	0,	0,22		54		
Umidità iniziale e umidità finale (%):		20,8		19,5		19,1		
Peso di volume iniziale e finale (kN/m³):	19,8	24,0	20,3	24,3	20,0	23,8		

DIAGRAMMA

Tensione - Pressione verticale

Tipo di prova: Consolidata - lenta Velocità di deformazione: 0,010 mm / min Tempo di consolidazione (ore): 24

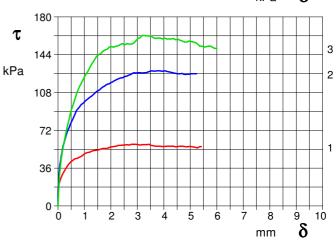


DIAGRAMMA Deform. vert. - Deform. orizz.

DIAGRAMMA Tensione - Deformaz. orizz.

Autorizzazione del MINISTERO DELLE INFRASTRUTTURE E DEI TRASPORTI Settore A - Prove di Laboratorio su terre

Decreto 2436 del 14/03/2013 - Art. 59 DPR 380/2001 - Circolare 7618/STC 2010

CERTIFICATO DI PROVA N°:01367Pagina 2/4DATA DI EMISSIONE:27/03/19Inizio analisi:22/03/19VERBALE DI ACCETTAZIONE N°:87 del 19/02/19Apertura campione:01/03/19Fine analisi:24/03/19

COMMITTENTE: GHEA ENGINEERING & CONSULTING s.r.l.

RIFERIMENTO: Pontassieve (FI)

SONDAGGIO: 1 CAMPIONE: 2 PROFONDITA': m 3.5-3.8

PROVA DI TAGLIO DIRETTO

Modalità di prova: Norma ASTM D 3080-04

	Provino 1		Provino 2			Provino 3			
Spostam. mm	Tensione kPa	Deform. vert. mm	Spostam. mm	Tensione kPa	Deform. vert. mm	Spostam. mm	Tensione kPa	Deform. vert. mm	
0,016	18,4	0,04	0,005	9,9	0,03	0,057	28,6	0,11	
0,167	29,7	0,08	0,043	30,7	0,04	0,194	55,6	0,19	
0,324	36,4	0,10	0,104	43,5	0,06	0,340	74,0	0,24	
0,482	41,7	0,11	0,173	53,7	0,07	0,494	90,3	0,29	
0,640	44,9	0,12	0,219	59,0	0,08	0,650	102,2	0,33	
0,804	46,3	0,13	0,253	62,2	0,09	0,804	113,2	0,36	
0,963	48,8	0,14	0,423	74,6	0,11	0,962	121,0	0,39	
1,127	50,9	0,15	0,596	84,5	0,13	1,125	127,9	0,41	
1,290	52,3	0,15	0,763	92,6	0,15	1,288	135,7	0,43	
1,457	53,0	0,16	0,938	97,5	0,16	1,450	142,2	0,44	
1,620	54,1	0,16	1,113	101,4	0,18	1,615	145,1	0,46	
1,784	54,8	0,17	1,296	104,9	0,19	1,777	148,4	0,46	
1,948	55,8	0,18	1,469	109,2	0,20	1,941	151,2	0,48	
2,113	56,5	0,18	1,645	112,4	0,20	2,106	151,2	0,49	
2,274	57,6	0,18	1,820	115,2	0,21	2,272	152,4	0,49	
2,439	58,0	0,18	1,999	117,3	0,21	2,437	154,5	0,50	
2,606	58,3	0,18	2,183	119,8	0,21	2,602	154,5	0,51	
2,774	58,7	0,18	2,361	121,9	0,21	2,773	154,1	0,52	
2,940	58,7	0,18	2,539	123,3	0,22	2,939	156,9	0,53	
3,108	58,0	0,18	2,714	124,7	0,22	3,106	160,2	0,54	
3,276	58,3	0,18	2,892	126,9	0,22	3,274	162,2	0,54	
3,443	58,7	0,18	3,077	126,9	0,22	3,443	161,8	0,55	
3,609	57,2	0,18	3,251	126,9	0,22	3,609	160,2	0,55	
3,773	56,9	0,18	3,439	127,9	0,22	3,776	159,8	0,56	
3,941	56,5	0,18	3,610	128,3	0,22	3,942	159,0	0,56	
4,108	56,9	0,18	3,792	128,6	0,22	4,108	159,0	0,56	
4,276	56,9	0,18	3,967	128,3	0,22	4,276	159,0	0,57	
4,446	56,2	0,19	4,153	127,9	0,22	4,444	158,2	0,57	
4,613	56,9	0,20	4,340	126,9	0,22	4,616	157,8	0,58	
4,779	56,5	0,20	4,504	125,8	0,22	4,787	156,1	0,58	
4,948	56,5	0,20	4,686	126,1	0,22	4,955	156,9	0,58	
5,105	56,2	0,20	4,861	125,4	0,22	5,122	156,1	0,58	
5,262 5,417	55,1 56,5	0,21 0,22	5,043 5,230	125,8 125,8	0,22 0,22	5,282 5,443	154,1 152,0	0,58 0,59	
3,417	36,3	0,22	5,230	123,0	0,22	5,603	152,0	0,59	
						5,763	151,6	0,59	
						5,763	150,0	0,60	
						5,920	130,0	0,00	

Autorizzazione del MINISTERO DELLE INFRASTRUTTURE E DEI TRASPORTI Settore A - Prove di Laboratorio su terre

Settore A - Prove di Laboratorio su terre Decreto 2436 del 14/03/2013 - Art. 59 DPR 380/2001 - Circolare 7618/STC 2010

CERTIFICATO DI PROVA N°:01367Pagina 3/4VERBALE DI ACCETTAZIONE N°:87 del 19/02/19

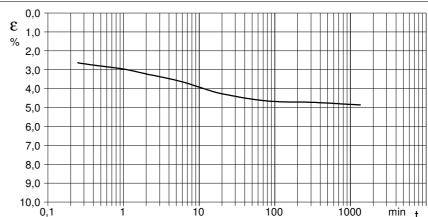
DATA DI EMISSIONE: 27/03/19 Inizio analisi: 22/03/19 Apertura campione: 01/03/19 Fine analisi: 24/03/19

COMMITTENTE: GHEA ENGINEERING & CONSULTING s.r.l.

7

0,000

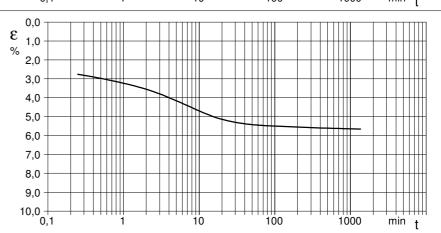
RIFERIMENTO: Pontassieve (FI)


SONDAGGIO: 1 CAMPIONE: 2 PROFONDITA': m 3.5-3.8

PROVA DI TAGLIO DIRETTO - FASE DI CONSOLIDAZIONE

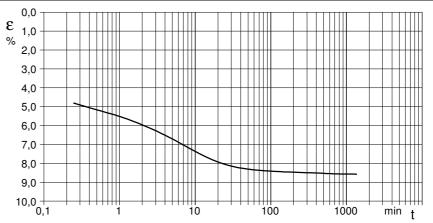
Modalità di prova: Norma ASTM D 3080-04

Diagramma



<u>Diagramma</u> TEMPO - CEDIMENTO

Df (mm)


Vs (mm/min)

PROVINO 2	
Pressione (kPa)	196
Altezza iniziale (cm)	2,000
Altezza finale (cm)	1,887
Sezione (cm²):	28,27
T ₅₀ (min)	0,0
Df (mm)	7
Vs (mm/min)	0,000

<u>Diagramma</u> <u>TEMPO - CEDIMENTO</u>

294
2,000
1,829
28,27
0,0
7
0,000

Vs = Velocità stimata di prova Df = Deformazione a rottura stimata

 $tf = 50 \times T_{50}$

Vs = Df / tf

Autorizzazione del MINISTERO DELLE INFRASTRUTTURE E DEI TRASPORTI

Settore A - Prove di Laboratorio su terre Decreto 2436 del 14/03/2013 - Art. 59 DPR 380/2001 - Circolare 7618/STC 2010

CERTIFICATO DI PROVA N°:01367Pagina 4/4DATA DI EMISSIONE:27/03/19Inizio analisi:22/03/19VERBALE DI ACCETTAZIONE N°:87 del 19/02/19Apertura campione:01/03/19Fine analisi:24/03/19

COMMITTENTE: GHEA ENGINEERING & CONSULTING s.r.l.

RIFERIMENTO: Pontassieve (FI)

SONDAGGIO: 1 CAMPIONE: 2 PROFONDITA': m 3.5-3.8

PROVA DI TAGLIO DIRETTO - FASE DI CONSOLIDAZIONE

Modalità di prova: Norma ASTM D 3080-04

	Provino 1			Provino 2			Provino 3	
Tempo	Cedim.	Cedim.	Tempo	Cedim.	Cedim.	Tempo	Cedim.	Cedim.
minuti	mm/100	%	minuti	mm/100	%	minuti	mm/100	%
0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
0,25	52,70	2,64	0,25	55,30	2,77	0,25	96,20	4,81
0,50	56,10	2,81	0,50	59,50	2,98	0,50	103,30	5,17
1,00	59,20	2,96	1,00	64,70	3,24	1,02	110,50	5,53
2,00	64,40	3,22	2,00	71,10	3,56	2,02	119,40	5,97
4,00	69,40	3,47	4,00	79,90	4,00	4,02	130,30	6,52
8,00	75,80	3,79	8,00	90,50	4,53	8,02	143,10	7,16
15,00	82,90	4,15	15,00	99,70	4,99	15,02	154,40	7,72
30,00	88,10	4,41	30,00	106,00	5,30	30,02	162,90	8,15
60,00	92,00	4,60	60,00	109,00	5,45	60,02	166,80	8,34
120,00	93,90	4,70	120,00	110,30	5,52	120,02	168,60	8,43
240,00	94,20	4,71	240,00	111,30	5,57	240,02	169,60	8,48
480,00	95,20	4,76	480,00	112,20	5,61	480,02	170,50	8,53
900,00	96,50	4,83	900,00	112,80	5,64	900,02	171,30	8,57
1200,00	97,00	4,85	1210,00	113,10	5,66	1210,02	171,30	8,57
1379,88	97,20	4,86	1411,43	113,10	5,66	1413,07	171,40	8,57

COMMITTENTE: GHEA ENGINEERING & CONSULTING s.r.l.

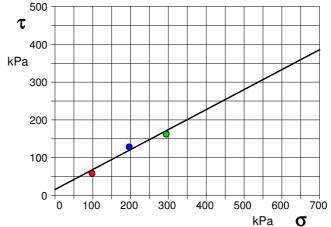
RIFERIMENTO: Pontassieve (FI)

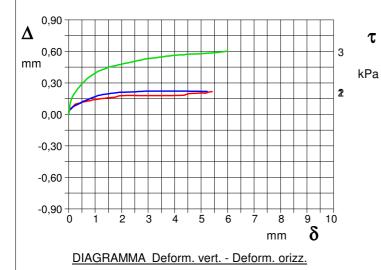
SONDAGGIO: CAMPIONE: PROFONDITA': m 3.5-3.8

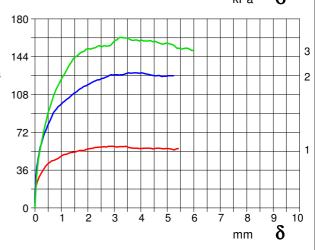
PROVA DI TAGLIO DIRETTO

Modalità di prova: Norma ASTM D 3080-04

Provino n°:		1		2		3		
Condizione del provino:	Indist	urbato	Indist	Indisturbato		urbato		
Pressione verticale (kPa):	98		196		294			
Tensione a rottura (kPa):	5	9	129		129		162	
Deformazione orizzontale a rottura (mm):	2,	77	3,55		3,	19		
Deformazione verticale a rottura (mm):	0,	18	0,	22	0,	54		
Umidità iniziale e umidità finale (%):		20,8		19,5		19,1		
Peso di volume iniziale e finale (kN/m³):	19,8	24,0	20,3	24,3	20,0	23,8		


τ


DIAGRAMMA


Tensione - Pressione verticale

15,9 kPa Coesione: Angolo di attrito interno: 27,8 °

Tipo di prova: Consolidata - lenta Velocità di deformazione: 0,010 mm / min Tempo di consolidazione (ore):

COEFF.TEORICO DI ENERGIA

PENETROMETRO DINAMICO IN USO: DPSH (S. Heavy)

Classificazio	ne ISSMFE (1988) dei per	netrometri dinamici
TIPO	Sigla riferimento	Peso Massa Battente M (kg)
Leggero	DPL (Light)	M ≤ 10
Medio	DPM (Medium)	10 < M < 40
Pesante	DPH (Heavy)	40 ≤ M < 60
Super pesante	DPSH (Super Heavy)	M ≥ 60

Riferimento: 0898

CARATTERISTICHE TECNICHE: DPSH (S. Heavy)

PESO MASSA BATTENTE	M	= 63,50 kg
ALTEZZA CADUTA LIBERA	Н	$= 0.75 \mathrm{m}$
PESO SISTEMA BATTUTA	Ms	= 30,00 kg
DIAMETRO PUNTA CONICA	D	= 50,50 mm
AREA BASE PUNTA CONICA	Α	$= 20,00 \text{ cm}^2$
ANGOLO APERTURA PUNTA	α	= 90 °
LUNGHEZZA DELLE ASTE	La	= 1,00 m
PESO ASTE PER METRO	Ma	= 8,00 kg
PROF. GIUNZIONE 1ª ASTA	P1	= 0,80 m
AVANZAMENTO PUNTA	δ	= 0,20 m
NUMERO DI COLPI PUNTA	Ν	= N(20) ⇒ Relativo ad un avanzamento di 20 cm
RIVESTIMENTO / FANGHI	SI	
ENERGIA SPECIFICA x COLPO	Q	= $(MH)/(A_{\delta})$ = 11,91 kg/cm ² (prova SPT : Qspt = 7.83 kg/cm ²)

Valutazione resistenza dinamica alla punta Rpd [funzione del numero di colpi N] (FORMULA OLANDESE) :

Rpd = $M^2 H / [A e (M+P)] = M^2 H N / [A \delta (M+P)]$

= 1,521

(teoricamente : Nspt = $\beta t N$)

Rpd = resistenza dinamica punta [area A] M = peso massa battente (altezza caduta H) $e = infissione per colpo = <math>\delta / N$ P = peso totale aste e sistema battuta

= Q/Qspt

UNITA' di MISURA (conversioni)

1 kg/cm² = 0.098067 MPa

βt

 $1 \text{ MPa} = 1 \text{ MN/m}^2 = 10.197 \text{ kg/cm}^2$

1 bar = $1.0197 \text{ kg/cm}^2 = 0.1 \text{ MPa}$

1 kN = 0.001 MN = 101.97 kg

Rifer. 0898

LEGENDA VALORI DI RESISTENZA

Strumento utilizzato:

PENETROMETRO STATICO OLANDESE tipo GOUDA (tipo meccanico).

Caratteristiche:

```
- punta conica meccanica Ø 35.7 mm, angolo di apertura \alpha= 60 ° -( area punta Ap = 10 cm<sup>2</sup>)
```

- manicotto laterale di attrito tipo 'Begemann' (Ø 35.7 mm - h 133 mm - sup. lat. Am. = 150 cm²)

- velocità di avanzamento costante $V = 2 \text{ cm} / \text{sec} (\pm 0.5 \text{ cm} / \text{sec})$

- spinta max nominale dello strumento Smax variabile a seconda del tipo

- costante di trasformazione (lett.⇒ Spinta) Ct = SPINTA (Kg) / LETTURA DI CAMPAGNA

fase 1 - resistenza alla punta $Rp (Kg/cm^2) = (L. punta) Ct/10$

fase 2 - resistenza laterale locale RL (Kg / cm²) = [(L. laterale) - (L. punta)] Ct / 150

fase 3 - resistenza totale Rt (Kg) = (L. totale) Ct

Rp / RL = 'rapporto Begemann'

- L. punta = lettura di campagna durante l'infissione della sola punta (fase 1)

- L. laterale = lettura di campagna relativa all'infissione di punta e manicotto (fase 2)

- L. totale = lettura di campagna relativa all'infissione delle aste esterne (fase 3)

N.B.: la spinta S (Kg), corrispondente a ciascuna fase, si ottiene moltiplicando la corrispondente lettura di campagna L per la costante di trasformazione Ct.

N.B.: causa la distanza intercorrente (20 cm circa) fra il manicotto laterale e la punta conica del penetrometro, la resistenza laterale locale RL viene computata 20 cm sopra la punta.

CONVERSIONI

```
1 kN ( kiloNewton ) = 1000 N \approx 100 kg = 0,1 t - 1MN (megaNewton ) = 1000 kN = 1000000 N \approx 100 t
```

1 kPa (kiloPascal) = 1 kN/m² = 0,001 MN/m² = 0,001 MPa \approx 0,1 t/m² = 0,01 kg/cm²

1 MPa (MegaPascal) = 1 MN/m² = 1000 kN/m² = 1000 kPa \approx 100 t/m² = 10 kg/cm²

 $kg/cm^2 = 10 t/m^2 \approx 100 kN/m^2 = 100 kPa = 0,1 MN/m^2 = 0,1 Mpa$

 $1 t = 1000 kg \approx 10 kN$

LEGENDA VALUTAZIONI LITOLOGICHE

Valutazioni in base al rapporto: F = (Rp / RL)

(Begemann 1965 - Raccomandazioni A.G.I. 1977)

valide in via approssimata per terreni immersi in falda :

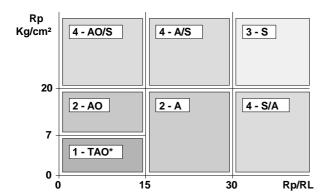
F = Rp / RL	NATURA LITOLOGICA	PROPRIETA'
_	TORBE ED ARGILLE ORGANICHE LIMI ED ARGILLE LIMI SABBIOSI E SABBIE LIMOSE	COESIVE
F > 60	SABBIE E SABBIE CON GHIAIA	GRANULARI

Vengono inoltre riportate le valutazioni stratigrafiche fornite da Schmertmann (1978), ricavabili in base ai valori di Rp e di FR = (RL / Rp) % :

- AO = argilla organica e terreni misti - Att = argilla (inorganica) molto tenera
- At = argilla (inorganica) tenera
- Am = argilla (inorganica) di media consistenza
- Ac = argilla (inorganica) consistente
- Acc = argilla (inorganica) molto consistente- ASL = argilla sabbiosa e limosa
- SAL = sabbia e limo / sabbia e limo argilloso
- Ss = sabbia sciolta
- Sm = sabbia mediamente addensata
- Sd = sabbia densa o cementata
- SC = sabbia con molti fossili, calcareniti

Secondo Schmertmann il valore della resistenza laterale da usarsi, dovrebbe essere pari a:

- $1/3 \pm 1/2$ di quello misurato , per depositi sabbiosi
- quello misurato (inalterato), per depositi coesivi.


LEGENDA PARAMETRI GEOTECNICI

SCELTE LITOLOGICHE (validità orientativa)

Le scelte litologiche vengono effettuate in base al rapporto Rp / RL (Begemann 1965 - Raccomandazioni A.G.I. 1977), prevedendo altresì la possibilità di casi dubbi :

Rp ≤ 20 kg/cm² : possibili terreni COESIVI anche se (Rp/RL) > 30

Rp ≥ 20 kg/cm² : possibili terreni GRANULARI anche se (Rp/RL) < 30

NATURA LITOLOGICA

- 1 COESIVA (TORBOSA) ALTA COMPRIMIBILITA'
- 2 COESIVA IN GENERE
- 3 GRANULARE
- 4 COESIVA / GRANULARE

PARAMETRI GEOTECNICI (validità orientativa) - simboli - correlazioni - bibliografia

- γ' = peso dell' unità di volume (efficace) del terreno [correlazioni : γ' - Rp - natura] (Terzaghi & Peck 1967 -Bowles 1982)
- σίνο = tensione verticale geostatica (efficace) del terreno (valutata in base ai valori di γ ')
- = coesione non drenata (terreni coesivi) [correlazioni : Cu Rp] Cu
- **OCR** grado di sovra consolidazione (terreni coesivi) [correlazioni : OCR - Cu - σ'vo]
 - (Ladd et al. 1972 / 1974 / 1977 Lancellotta 1983)
- Eu = modulo di deformazione non drenato (terr.coes.) [correl. : Eu - Cu - OCR - Ip Ip= ind.plast.] Eu50 - Eu25 corrispondono rispettivamente ad un grado di mobilitazione dello sforzo deviatorico pari al 50-25% (Duncan & Buchigani 1976)
- E' = modulo di deformazione drenato (terreni granulari) [correlazioni : E' - Rp] E'50 - E'25 corrispondono rispettivamente ad un grado di mobilitazione dello sforzo deviatorico pari al 50-25% (coeff. di sicurezza F = 2 - 4 rispettivamente) (Schmertmann 1970 / 1978 - Jamiolkowski et al. 1983)
- Мо = modulo di deformazione edometrico (terreni coesivi e granulari) [correl.: Mo - Rp - natura] (Sanglerat 1972 - Mitchell & Gardner 1975 - Ricceri et al. 1974 - Holden 1973)
- = densità relativa (terreni gran. N. C. normalmente consolidati) Dr
 - [correlazioni: Dr Rp o'vo] (Schmertmann 1976)
- = angolo di attrito interno efficace (terreni granulari N.C.) [correl.: Ø' Dr Rp σ'vo] Ø' (Schmertmann 1978 - Durgunoglu & Mitchell 1975 - Meyerhof 1956 / 1976) Ø1s - (Schmertmann) sabbia fine uniforme Ø2s - sabbia media unif./ fine ben gradata
 - Ø3s sabbia grossa unif./ media ben gradata Ø4s - sabbia-ghiaia poco lim./ ghiaietto unif. Ødm - (Durgunoglu & Mitchell) sabbie N.C. Ømy - (Meyerhof) sabbie limose
- Amax = accelerazione al suolo che può causare liquefazione (terreni granulari) (g = acc.gravità)(Seed & Idriss 1971 - Sirio 1976) [correlazioni: (Amax/g) - Dr]

Via Ser Gorello, 11/a 52100 AREZZO tel. 0575 / 323501 - fax 0575 / 22730 - cell. 0348 / 7007360

PROVA PENETROMETRICA DINAMICA TABELLE VALORI DI RESISTENZA

n° 1

Riferimento: 0898

indagine : Committente: Ghea Engineering & Consulting Srl
 cantiere : Realizzazione nuovo campo sussidiario
 località : Pontassieve, Via Giuseppe Di Vittorio
 data : 13/02/2019
 quota inizio : Piano campagna
 prof. falda : 5,20 m da quota inizio

- note : - pagina :

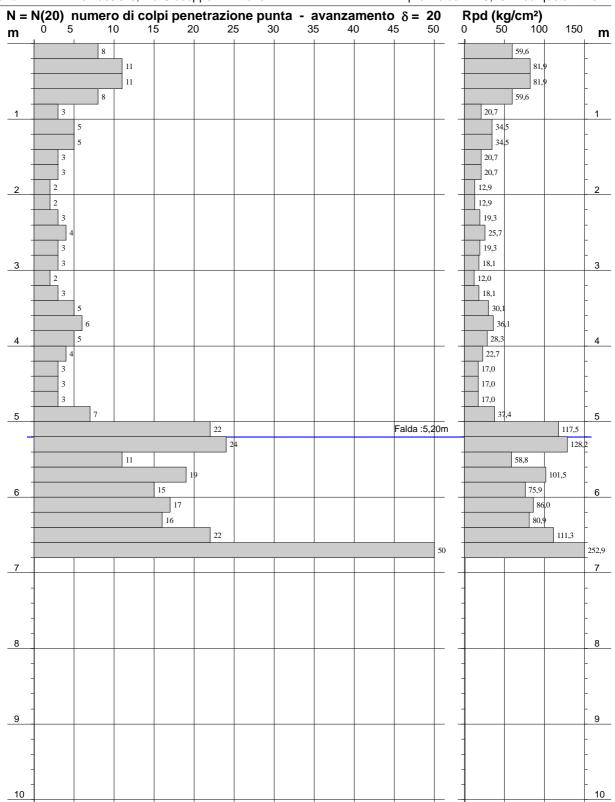
Prof.((m)	N(colpi p)	Rpd(kg/cm²)	N(colpi r)	asta	Prof.	.(m)	N(colpi p)	Rpd(kg/cm²)	N(colpi r)	asta
		_									
0.00 - 0	0,20	8	59,6		1	3,40 -	3,60	5	30,1		4
0,20 - 0	0,40	11	81,9		1	3,60 -	3,80	6	36,1		4
0,40 - 0	0,60	11	81,9		1	3,80 -	4,00	5	28,3		5
0,60 - 0	0,80	8	59,6		1	4,00 -	4,20	4	22,7		5
0,80 - 1	1,00	3	20,7		2	4,20 -	4,40	3	17,0		5
1,00 - 1	1,20	5	34,5		2	4,40 -	4,60	3	17,0		5
1,20 - 1	1,40	5	34,5		2	4,60 -	4,80	3	17,0		5
1,40 - 1	1,60	3	20,7		2	4,80 -	5,00	7	37,4		6
1,60 - 1	1,80	3	20,7		2	5,00 -	5,20	22	117,5		6
1,80 - 2	2,00	2	12,9		3	5,20 -	5,40	24	128,2		6
2,00 - 2	2,20	2	12,9		3	5,40 -	5,60	11	58,8		6
2,20 - 2	2,40	3	19,3		3	5,60 -	5,80	19	101,5		6
2,40 - 2	2,60	4	25,7		3	5,80 -	6,00	15	75,9		7
2,60 - 2	2,80	3	19,3		3	6,00 -	6,20	17	86,0		7
2,80 - 3	3,00	3	18,1		4	6,20 -	6,40	16	80,9		7
3,00 - 3	3,20	2	12,0		4	6,40 -	6,60	22	111,3		7
3,20 - 3	3,40	3	18,1		4	6,60 -	6,80	50	252,9		7

⁻ PENETROMETRO DINAMICO tipo: DPSH (S. Heavy)

⁻ M (massa battente)= 63,50 kg - H (altezza caduta)= 0,75 m - A (area punta)= 20,00 cm² - D(diam. punta)= 50,50 mm

⁻ Numero Colpi Punta N = N(20) [$\delta = 20$ cm]

⁻ Uso rivestimento / fanghi iniezione : SI

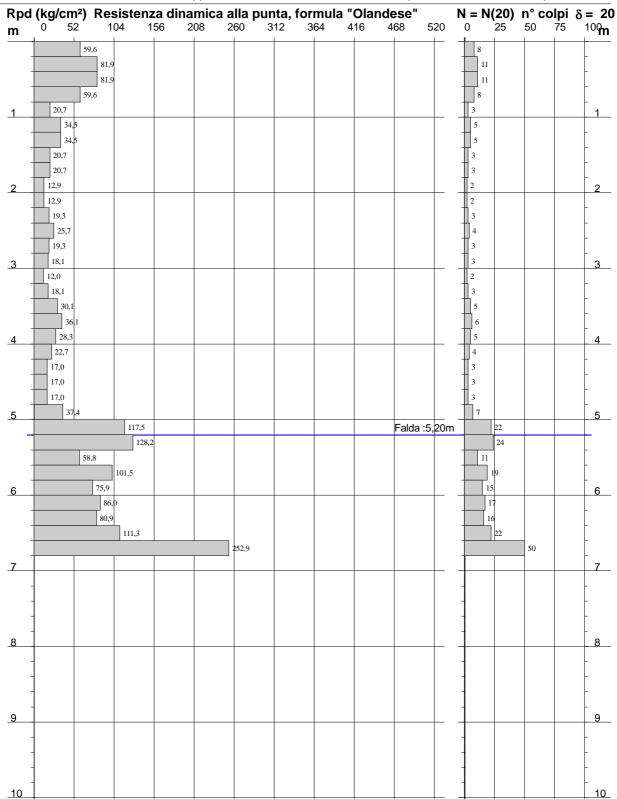

PROVA PENETROMETRICA DINAMICA DIAGRAMMA NUMERO COLPI PUNTA - Rpd

n° 1

Riferimento: 0898

- indagine : Committente: Ghea Engineering & Consulting Srl - cantiere : Realizzazione nuovo campo sussidiario - località : Pontassieve, Via Giuseppe Di Vittorio Scala 1: 50

- data : 13/02/2019
- quota inizio : Piano campagna
- prof. falda : 5,20 m da quota inizio


PROVA PENETROMETRICA DINAMICA DIAGRAMMA RESISTENZA DINAMICA PUNTA Scala

n° 1

Riferimento: 0898

Scala 1: 50

- indagine : Committente: Ghea Engineering & Consulting Srl
 - cantiere : Realizzazione nuovo campo sussidiario
 - località : Pontassieve, Via Giuseppe Di Vittorio
 - data : 13/02/2019
 - quota inizio : Piano campagna
 - prof. falda : 5,20 m da quota inizio

Via Ser Gorello, 11/a $\,$ 52100 AREZZO tel. $\,$ 0575 / 323501 - fax 0575 / 22730 $\,$ - cell. $\,$ 0348 / 7007360

PROVA PENETROMETRICA DINAMICA ELABORAZIONE STATISTICA

n° 1

Riferimento: 0898

- indagine : Committente: Ghea Engineering & Consulting Srl
 - cantiere : Realizzazione nuovo campo sussidiario
 - località : Pontassieve, Via Giuseppe Di Vittorio
 - note : 13/02/2019
 - quota inizio : Piano campagna
 - prof. falda : 5,20 m da quota inizio
 - pagina : 1

n°	Profondità (n) PARAMETRO		ELABORAZIONE STATISTICA								Nspt
			М	min	Max	½(M+min)	s	M-s	M+s			
1	0,00 0,80	N Rpd	9,5 70,8	8 60	11 82	8,8 65,2				10 75	1,52	15
2	0,80 2,20	N Rpd	3,3 22,4	2 13	5 35	2,6 17,6	1,3 9,0	2,0 13,4	4,5 31,4	3 20	1,52	5
3	2,20 3,40	N Rpd	3,0 18,8	2 12	4 26	2,5 15,4	 4,4	2,4 14,4	3,6 23,1	3 19	1,52	5
4	3,40 4,80	N Rpd	4,1 24,0	3 17	6 36	3,6 20,5	1,2 7,7	2,9 16,4	5,4 31,7	4 23	1,52	6
5	4,80 6,60	N Rpd	17,0 88,6	7 37	24 128	12,0 63,0	5,5 29,2	11,5 59,4	22,5 117,8	17 89	1,52	26
6	6,60 6,80	N Rpd	50,0 252,9	50 253	50 253	50,0 252,9				50 253	1,52	76

M: valore medio min: valore minimo Max: valore massimo s: scarto quadratico medio

N: numero Colpi Punta prova penetrometrica dinamica (avanzamento δ = 20 cm) Rpd: resistenza dinamica alla punta (kg/cm²)

Coefficiente correlazione con prova SPT (valore teorico β t = 1,52) Nspt: número colpi prova SPT (avanzamento δ = 20 cm)

Nspt - PARAMETRI GEOTECNICI

n°	Prof.(m)	LITOLOGIA	Nspt	1	NATUR	A GRA	ANULA	RE	NATURA COESIVA				
				DR	ø'	E'	Ysat	Yd	Cu	Ysat	W	е	
1	0.00 0.80	Suolo	15	42.5	31.5	307	1.96	1.54					
2	0.80 2.20	Limi argillosi	5						0.31	1.83	39	1.061	
3	2.20 3.40	Sabbie e sabbie limose	5	18.3	28.0	230	1.88	1.41					
4	3.40 4.80	Limi argillosi	6						0.38	1.85	37	1.000	
5	4.80 6.60	Ghiaie e sabbie	26	59.0	34.8	392	2.03	1.65					
6	6.60 6.80	Argilliti	76	94.8	44.3	777	2.21	1.94					

Nspt: numero di colpi prova SPT (avanzamento $\delta = 30 \, \text{cm}$)

DR % = densità relativa $\, \varnothing' \, (^\circ) = \text{angolo di attrito efficace} \, e \, (-) = \text{indice dei vuoti} \, Cu \, (kg/cm²) = \text{coesione non drenata} \,$

E' (kg/cm²) = modulo di deformazione drenato W% = contenuto d'acqua Ysat, Yd (t/m³) = peso di volume saturo e secco (rispettivamente) del terreno

Software by: Dr.D.MERLIN - 0425/840820

e-mail: tecnafon@technet.it

Via Ser Gorello, 11/a 52100 AREZZO tel. 0575 / 323501 - fax 0575 / 22730 - cell. 0348 / 7007360

PROVA PENETROMETRICA DINAMICA TABELLE VALORI DI RESISTENZA

n° 2

Riferimento: 0898

indagine: Committente: Ghea Engineering & Consulting Srl
 cantiere: Realizzazione nuovo campo sussidiario
 località: Pontassieve, Via Giuseppe Di Vittorio
 data: 13/02/2019
 quota inizio: Piano campagna
 prof. falda: 4,60 m da quota inizio

- note : - pagina :

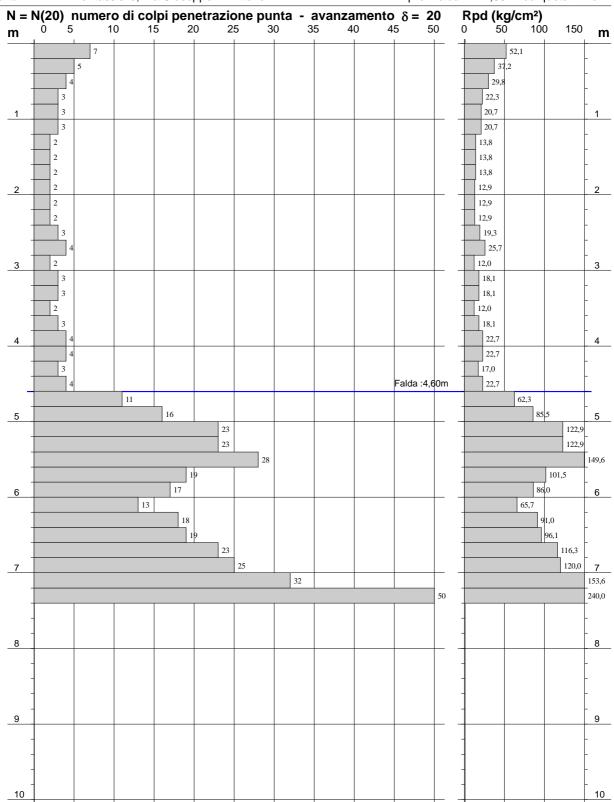
Prof.(m)	N(colpi p)	Rpd(kg/cm²)	N(colpi r)	asta	Prof.	.(m)	N(colpi p)	Rpd(kg/cm²)	N(colpi r)	asta
	_	-0.4				4.00				_
0,00 - 0,20		52,1		1	3,80 -	4,00	4	22,7		5
0,20 - 0,40	5	37,2		1	4,00 -	4,20	4	22,7		5
0,40 - 0,60	4	29,8		1	4,20 -	4,40	3	17,0		5
0,60 - 0,80	3	22,3		1	4,40 -	4,60	4	22,7		5
0,80 - 1,00	3	20,7		2	4,60 -	4,80	11	62,3		5
1,00 - 1,20	3	20,7		2	4,80 -	5,00	16	85,5		6
1,20 - 1,40	2	13,8		2	5,00 -	5,20	23	122,9		6
1,40 - 1,60	2	13,8		2	5,20 -	5,40	23	122,9		6
1,60 - 1,80	2	13,8		2	5,40 -	5,60	28	149,6		6
1,80 - 2,00	2	12,9		3	5,60 -	5,80	19	101,5		6
2,00 - 2,20	2	12,9		3	5,80 -	6,00	17	86,0		7
2,20 - 2,40	2	12,9		3	6,00 -	6,20	13	65,7		7
2,40 - 2,60	3	19,3		3	6,20 -	6,40	18	91,0		7
2,60 - 2,80	4	25,7		3	6,40 -	6,60	19	96,1		7
2,80 - 3,00	2	12,0		4	6,60 -	6,80	23	116,3		7
3,00 - 3,20	3	18,1		4	6,80 -	7,00	25	120,0		8
3,20 - 3,40	3	18,1		4	7,00 -	7,20	32	153,6		8
3,40 - 3,60	2	12,0		4	7,20 -	7,40	50	240,0		8
3,60 - 3,80	3	18,1		4						

⁻ PENETROMETRO DINAMICO tipo: DPSH (S. Heavy)

⁻ M (massa battente)= 63,50 kg - H (altezza caduta)= 0,75 m - A (area punta)= 20,00 cm² - D(diam. punta)= 50,50 mm

⁻ Numero Colpi Punta N = N(20) [$\delta = 20$ cm]

⁻ Uso rivestimento / fanghi iniezione : SI

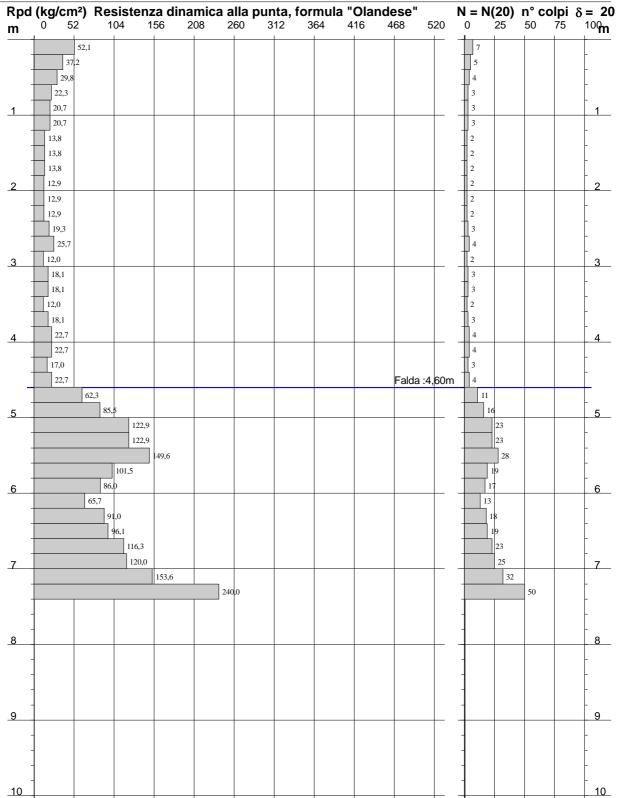

PROVA PENETROMETRICA DINAMICA DIAGRAMMA NUMERO COLPI PUNTA - Rpd

n° 2

Riferimento: 0898

- indagine : Committente: Ghea Engineering & Consulting Srl - cantiere : Realizzazione nuovo campo sussidiario - località : Pontassieve, Via Giuseppe Di Vittorio Scala 1: 50

- data : 13/02/2019
- quota inizio : Piano campagna
- prof. falda : 4,60 m da quota inizio


PROVA PENETROMETRICA DINAMICA DIAGRAMMA RESISTENZA DINAMICA PUNTA

n° 2

Riferimento: 0898

Scala 1: 50

- indagine : Committente: Ghea Engineering & Consulting Srl
 - cantiere : Realizzazione nuovo campo sussidiario
 - località : Pontassieve, Via Giuseppe Di Vittorio
 - data : 13/02/2019
 - quota inizio : Piano campagna
 - prof. falda : 4,60 m da quota inizio

Via Ser Gorello, 11/a 52100 AREZZO tel. 0575 / 323501 - fax 0575 / 22730 - cell. 0348 / 7007360

PROVA PENETROMETRICA DINAMICA ELABORAZIONE STATISTICA

n° 2

Riferimento: 0898

- indagine : Committente: Ghea Engineering & Consulting Srl
 - cantiere : Realizzazione nuovo campo sussidiario
 - località : Pontassieve, Via Giuseppe Di Vittorio
 - note : 13/02/2019
 - quota inizio : Piano campagna
 - prof. falda : 4,60 m da quota inizio
 - pagina : 1

n°	Profond	dità (m)	PARAMETRO		ELA	BORA	ZIONE STA		VCA	β	Nspt		
				М	min	Max	½(M+min)	s	M-s	M+s			
1	0,00	0,60	N Rpd	5,3 39,7	4 30	7 52	4,7 34,8				5 38	1,52	8
2	0,60	2,40	N Rpd	2,3 16,0	2 13	3 22	2,2 14,4	4,0	1,8 12,0	2,8 20,0	2 14	1,52	3
3	2,40	3,80	N Rpd	2,9 17,6	2 12	4 26	2,4 14,8	 4,7	2,2 12,9	3,5 22,3	3 18	1,52	5
4	3,80	4,60	N Rpd	3,8 21,2	3 17	4 23	3,4 19,1				4 22	1,52	6
5	4,60	7,20	N Rpd	20,5 105,7	11 62	32 154	15,8 84,0	5,9 28,5	14,6 77,2	26,4 134,1	20 103	1,52	30
6	7,20	7,40	N Rpd	50,0 240,0	50 240	50 240	50,0 240,0				50 240	1,52	76

M: valore medio min: valore minimo Max: valore massimo s: scarto quadratico medio

N: numero Colpi Punta prova penetrometrica dinamica (avanzamento δ = 20 cm) Rpd: resistenza dinamica alla punta (kg/cm²)

Coefficiente correlazione con prova SPT (valore teorico β t = 1,52) Nspt: número colpi prova SPT (avanzamento δ = 20 cm)

Nspt - PARAMETRI GEOTECNICI

n°	Prof.(m)	LITOLOGIA	Nspt	1	NATUR	A GRA	ANULA	RE	NATURA COESIVA				
				DR	ø'	E'	Ysat	Yd	Cu	Ysat	W	е	
1	0.00 0.60	Suolo	8	28.3	29.2	253	1.91	1.46					
2	0.60 2.40	Limi argillosi	3						0.19	1.78	44	1.194	
3	2.40 3.80	Sabbie e sabbie limose	5	18.3	28.0	230	1.88	1.41					
4	3.80 4.60	Limi argillosi	6						0.38	1.85	37	1.000	
5	4.60 7.20	Ghiaie e sabbie	30	65.0	36.0	423	2.05	1.69					
6	7.20 7.40	Argilliti	76	94.8	44.3	777	2.21	1.94					

Nspt: numero di colpi prova SPT (avanzamento $\delta = 30 \, \text{cm}$)

DR % = densità relativa $\, \varnothing' \, (^\circ) = \text{angolo di attrito efficace} \, e \, (-) = \text{indice dei vuoti} \, Cu \, (kg/cm²) = \text{coesione non drenata} \,$

E' (kg/cm²) = modulo di deformazione drenato W% = contenuto d'acqua Ysat, Yd (t/m³) = peso di volume saturo e secco (rispettivamente) del terreno

Software by: Dr.D.MERLIN - 0425/840820

e-mail: tecnafon@technet.it

tel. 0575 / 323501 - fax 0575 / 22730 - cell. 0348 / 7007360 Rifer. 0898

PROVA PENETROMETRICA STATICA LETTURE DI CAMPAGNA / VALORI DI RESISTENZA

CPT 3 2.010496-013

Ghea Engineering & Consulting Srl - data : 13/02/2019 - committente : - lavoro : Realizzazione nuovo campo sussidiario - quota inizio: Piano Campagna Pontassieve, Via Giuseppe Di Vittorio località : - prof. falda: 5,00 m da quota inizio

Prova non conclusa causa rifiuto Rp ±: 464 kg/cm² - pagina : - note :

prf	LP	LL	Rp	RL	Rp/RI	prf	LP	LL	Rp	RL	Rp/RI
m	Kg/cm ²	Kg/cm ²	Kg/cm ²	Kg/cm ²	-	m	Kg/cm ²	Kg/cm ²	Kg/cm²	Kg/cm ²	
0,20				0,93		3,00	19,0	36,0	19,0	1,20	16,0
0,40	159,0	173,0	159,0	1,67	95,0	3,20	16,0	34,0	16,0	1,60	10,0
0,60	45,0	70,0	45,0	1,80	25,0	3,40	20,0	44,0	20,0	1,00	20,0
0,80	46,0	73,0	46,0	2,47	19,0	3,60	13,0	28,0	13,0	1,67	8,0
1,00	20,0	57,0	20,0	1,27	16,0	3,80	15,0	40,0	15,0	2,00	8,0
1,20	18,0	37,0	18,0	1,00	18,0	4,00	81,0	111,0	81,0	3,60	23,0
1,40	22,0	37,0	22,0	1,13	19,0	4,20	39,0	93,0	39,0	1,27	31,0
1,60	23,0	40,0	23,0	1,47	16,0	4,40	58,0	77,0	58,0	3,27	18,0
1,80	22,0	44,0	22,0	1,27	17,0	4,60	115,0	164,0	115,0	8,47	14,0
2,00	23,0	42,0	23,0	1,53	15,0	4,80	298,0	425,0	298,0	5,47	55,0
2,20	24,0	47,0	24,0	1,60	15,0	5,00	365,0	447,0	365,0	5,67	64,0
2,40	22,0	46,0	22,0	1,47	15,0	5,20	335,0	420,0	335,0	14,27	23,0
2,60	23,0	45,0	23,0	1,60	14,0	5,40	464,0	678,0	464,0		
2,80	20,0	44,0	20,0	1,13	18,0						

e-mail: tecnafon@technet.it

⁻ PENETROMETRO STATICO tipo GOUDA da 20 t - (con anello allargatore) -

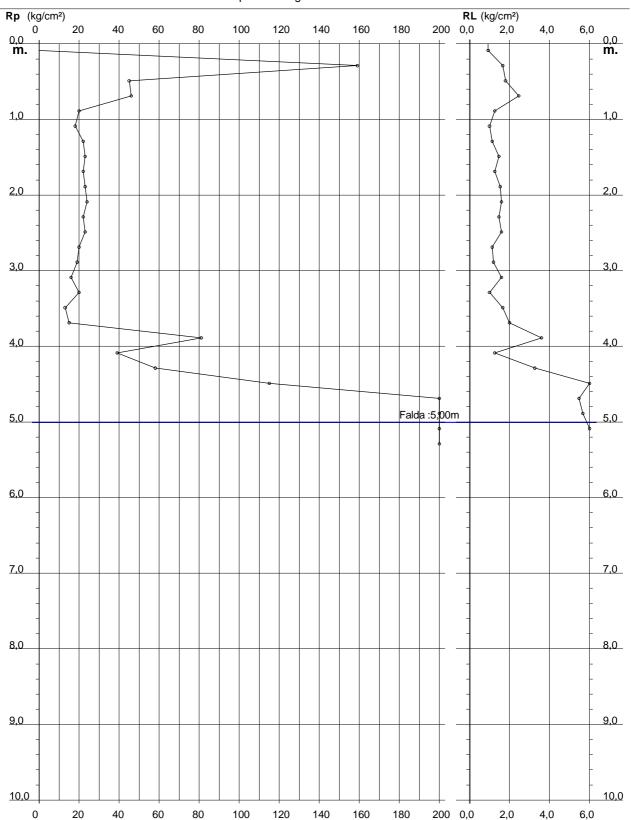
⁻ COSTANTE DI TRASFORMAZIONE Ct = 10 - Velocità Avanzamento punta 2 cm/s

⁻ punta meccanica tipo Begemann \emptyset = 35.7 mm (area punta 10 cm² - apertura 60°) - manicotto laterale (superficie 150 cm²)

0575 / 323501 - fax 0575 / 22730 - cell. 0348 / 7007360 Rifer. 0898

PROVA PENETROMETRICA STATICA DIAGRAMMA DI RESISTENZA

CPT 3

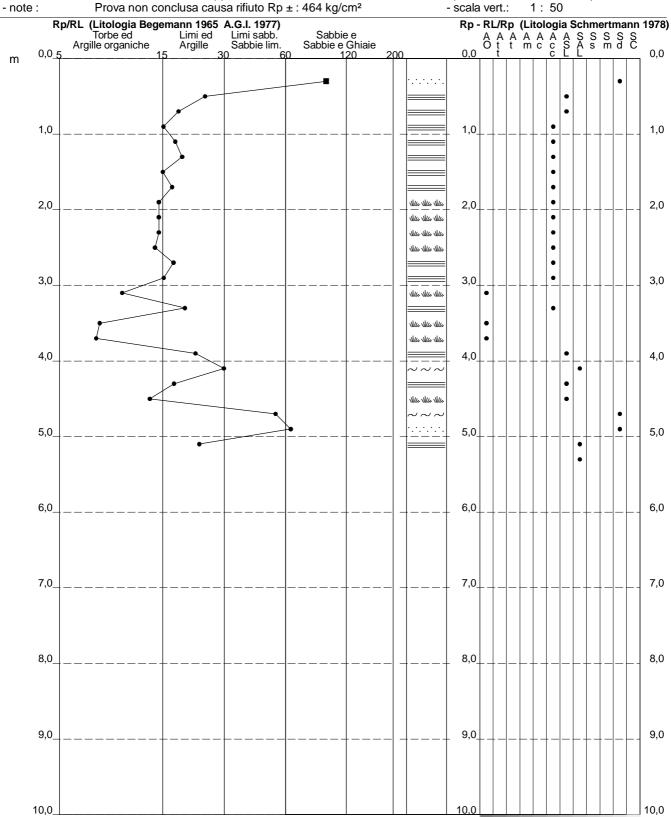

2.010496-013

committente : Ghea Engineering & Consulting Srl
 lavoro : Realizzazione nuovo campo sussidiario
 località : Pontassieve, Via Giuseppe Di Vittorio

- note : Prova non conclusa causa rifiuto Rp ± : 464 kg/cm²

data: 13/02/2019quota inizio: Piano Campagnaprof. falda: 5,00 m da quota inizio

- scala vert.: 1 : 50


tel. 0575 / 323501 - fax 0575 / 22730 - cell. 0348 / 7007360 Rifer. 0898

PROVA PENETROMETRICA STATICA VALUTAZIONI LITOLOGICHE

CPT 3

2.010496-013

- committente : Ghea Engineering & Consulting Srl - data : 13/02/2019
- lavoro : Realizzazione nuovo campo sussidiario - quota inizio : Piano Campagna
- località : Pontassieve, Via Giuseppe Di Vittorio - prof. falda : 5,00 m da quota inizio

tel. 0575 / 323501 - fax 0575 / 22730 - cell. 0348 / 7007360 Rifer. 0898

PROVA PENETROMETRICA STATICA TABELLA PARAMETRI GEOTECNICI

CPT 3

2.010496-013

- committente : Ghea Engineering & Consulting Srl - data : 13/02/2019
- lavoro : Realizzazione nuovo campo sussidiario - quota inizio : Piano Campagna
- località : Pontassieve, Via Giuseppe Di Vittorio - prof. falda : 5,00 m da quota inizio
- note : Prova non conclusa causa rifiuto Rp ± : 464 kg/cm² - pagina : 1

							NAT	URA	COES	SIVA					NATL	JRA (3RAI	IUL	ARE			
	Prof.		Rp/RI	Natura	Y'	p'vo	Cu	OCR	Eu50		Мо	Dr	ø1s	ø2s	ø3s	ø4s	ødm	ømy	Amax/g	E'50	E'25	Мо
	m	kg/cm ²	(-)	Litol.	t/m³	kg/cm ²	kg/cm²	(-)	kg/	cm²	kg/cm ²	%	(°)	(°)	(°)	(°)	(°)	(°)	(-)	kg/	cm² k	g/cm²
	0,20			???	1,85	0,04																
	0,40	159	95	3::::	1,85	0,07						100	42	43	45	46	45	36	0,258	265	398	477
	0,60	45	25	4/:/:	1,85	0,11	1,50	99,9	255	383	135	98	42	43	44	46	43	31	0,252	75	113	135
	0,80 1,00	46 20	19 16	4/:/: 4/:/:	1,85	0,15 0,19	1,53 0,80	99,9 39,2	261 136	391 204	138 60	92 58	41 36	42 38	44 40	45 43	42 37	31 27	0,230 0,125	77 33	115 50	138 60
_	1,20	18	18	2///	1,85	0,19	0,75	28,8	128	191	56		30	30	40	43			0,123		30	—
	1,40	22	19	4/:/:	1,85	0,26	0,85	27.6	144	216	66	53	35	38	40	42	36	28	0,111	37	55	66
	1,60	23	16	4/:/:	1,85	0,30	0,87	24,1	148	221	69	51	35	37	40	42	36	28	0,107	38	58	69
	1,80	22	17	4/:/:	1,85	0,33	0,85	20,1	144	216	66	47	35	37	39	42	35	28	0,096	37	55	66
_	2,00	23	15	4/:/:	1,85	0,37	0,87	18,2	148	221	69	46	34	37	39	42	34	28	0,093	38	58	69 _
	2,20	24 22	15 15	4/:/: 4/:/:	1,85	0,41	0,89 0,85	16,7 14.1	151 144	227 216	72 66	45 40	34 34	37 36	39 39	42 41	34 33	28 28	0,091	40 37	60 55	72 66
	2,40 2,60	23	14	4/:/:	1,85 1,85	0,44 0,48	0,85	13.1	144	221	69	39	34 34	36	38 38	41	33	28	0,079 0,078	38	58	69
	2,80	20	18	4/:/:	1,85	0,52	0,80	10,8	136	204	60	33	33	35	38	41	32	27	0,064	33	50	60
	3.00	19	16	2////	1,85	0,55	0,78	9,5	133	200	58											
	3,00	16	10	2////	1,85	0,59	0,70	7,7	144	216	52											
	3.40	20	20	4/:/:	1,85	0,63	0,80	8,5	149	224	60	28	32	35	37	40	31	27	0,054	33	50	60
	3,60 3,80	13	8	2////	1,85	0,67	0,60	5,6	180	270	47											
	3,80	15	8	2////	1,85	0,70	0,67	5,9	187	281 689	50 243	70		40	40	4.4	27		0.405	125	202	242
_	4,00	81 39	23 31	4/:/: 3::::	1,85 1,85	0,74 0,78	2,70	31,7	459	669	243	72 46	38 34	40 37	42 39	44 42	37 33	33 30	0,165 0,094	135 65	203 98	243 — 117 —
	4,40	58	18	4/:/:	1.85	0,70	1,93	18,5	329	493	174	58	36	38	40	43	35	31	0,126	97	145	174
	4,60	115	14	4/:/:	1,85	0,85	3,83	41,2	652	978	345	81	39	41	43	44	38	35	0,192	192	288	345
	4,80	298	55	3::::	1,85	0,89						100	42	43	45	46	42	40	0,258	497	745	894
_	5,00	365	64	3::::	1,15	0,91						100	42	43	45	46	43	40	0,258	608	913	1095 _
	5,20	335	23	4/:/:	1,13	0,93	9,99	99,9	1698	2547	1005	100	42	43	45	46	43	40	0,258	558	838	
	5.40	464		3::::	1.15	0.96						100	42	43	45	46	44	40	0.258	773	1160	1392

www.Geoma.it

Cell: 328-7255608 Fax: +391782206474

Email: Marzupinimarco@gmail.com Email Pec: Geoma.marzupini@pec.it

Skype: Geoma. Marzupini Sede: Via Brancoleta 1E

Monte San Savino 52048 (AR)

C.F. MRZMRC83B01A390P P.IVA 03318000928

GEOMA di Marco Marzupini Res. Pisch Via Brancoleta 1/E 52048 Mare S. Sawino (AR) Cell. 328-725508/ marzupinimarco@gmail.com C.F. MRZ MRC 88901 A390P - P.I. 03318000928

REPORT

SISMICA A RIFRAZIONE (Onde P e SH)

LOCALITÀ:	PONTASSIEVE	ID:	281351180219123R92	DATA:	18/02/19
COORDIANTE		LAT	43°46'20.53"N	LONG	11°25'44.85"E

PREMESSA

In località *Pontassieve* in data 18/02/2019 (Illustrazione 1) è stata eseguita una misura sismica a rifrazione per l'acquisizione delle onde P e Sh, con obbiettivo la valutazione della velocità media di propagazione delle onde elastiche.

Illustrazione 1: Ubicazione indagine sismica (non in scala)

TEORIA ALLA BASE DELLA SISMICA A RIFRAZIONE

La sismica a rifrazione ha lo scopo di determinare direttamente la velocità di propagazione, all'interno del mezzo in esame sia mediante onde di compressione (onde *P*) sia di taglio (onde *Sh*).

Tale tecnica si basa sulla misurazione di onde sismiche in un punto del terreno rilevando l'arrivo, lungo uno stendimento mediante ricevitori equidistanziati (geofoni).Il metodo sismico a rifrazione si basa sul concetto della birifrazione delle onde sismiche a seguito del fronte d'onda conico. Le onde prodotte da una sorgente artificiale che verranno analizzate in questo indagine, saranno quelle birifratte, cioè quelle che giungono a incidere con un angolo critico in una discontinuità sismica (intesa come variazione di impedenza acustica). Tali onde verranno rifratte con un angolo di 90° che si propagano parallelamente alla discontinuità fino a venire rifratte verso la superficie con lo stesso angolo di incidenza. Supponiamo di avere un suolo composto da solo due strati (velocità V₁, e V₂), una sorgente puntiforme che genera onde elastiche e uno stendimento di geofoni. Generando onde elastiche mediante una energizzazione del suolo si avrà che le onde che incontreranno i geofoni disposti lungo uno stendimento saranno le onde dirette poi, quando l'onda rifratta avrà percorso una certa distanza alla velocità V2, essa arriverà prima dell'onda diretta. Riportando tutto in ora un diagramma spazio – tempo (dromocrone Illustrazione 2), con in ascisse la distanza x ed in ordinate il tempo di percorrenza dell'onda, avremo che l'onda diretta è una retta passante per l'origine e con pendenza uguale a 1/V₁, mentre l'onda rifratta è una retta con pendenza pari a 1/V₂ che interseca l'asse dei tempi in un punto (chiamato intercetta o tempo di intersezione) di ordinata pari a 2 h cos ic/V₁

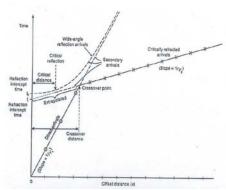
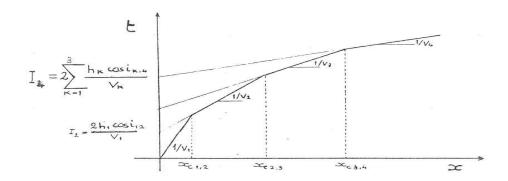


Illustrazione 2: Dromocrone

I due arrivi si intersecano in corrispondenza di un'ascissa x_c (detta distanza critica o di ginocchio) per la quale i tempi di percorrenza dell'onda diretta e rifratta sono uguali, cioè

$$x_{\epsilon} = 2h \cdot \sqrt{\frac{v_2 + v_1}{v_2 - v_1}}$$


Per $x < x_c$ arriverà ai ricevitori prima l'onda diretta e poi l'onda rifratta mentre per $x > x_c$ giungerà prima l'onda rifratta. Se il terreno presenterà più di due strati Illustrazione 3 (la maggior parte dei casi) si adopererà la formula :

$$t_n = 2\sum_{k=1}^{n-1} \frac{h_k \cos i_{(k,n)}}{V_k} + \frac{x}{V_n} = I_n + \frac{x}{V_n}$$

Tale espressione in x è l'equazione di una retta con pendenza pari a $1/V_n$.

Il diagramma spazio – tempo (dromocrona) sarà quindi costituito da n rette, la prima delle quali passante per l'origine è relativa all'onda diretta ed ha pendenza pari a $1/V_1$, mentre le altre, con pendenza $1/V_k$ (k=...n), rappresentano le onde rifratte da ciascuno strato: tali rette intersecheranno l'asse dei tempi in un'ordinata data dal primo termine del 2° membro detto "tempo intercetto".

Illustrazione 3: Dromocrone a più strati

SISMICA A RIFRAZIONE (ONDE P)

La sismica a rifrazione per onde P si basa sulla misurazione dei tempi dei primi arrivi delle onde sismiche di tipo compressionale P.

Tali onde vengono misurate mediante uno stendimento di 24 geofoni verticali da 4.5 Hz e generate da un maglio da 8 kg battuto su una piastra metallica poggiata nel terreno.

Le onde P muovono le particelle con un movimento longitudinale che risulta nella stessa direzione di propagazione del moto a una velocità Vp inversamente proporzionale alla densità ρ e direttamente proporzionale alle costanti elastiche λ e μ

SISMICA A RIFRAZIONE (ONDE Sh)

La sismica a rifrazione per onde Sh si basa sulla misurazione dei tempi, dei primi arrivi delle onde sismiche di tipo trasversale Sh.

Tali onde vengono misurate mediante uno stendimento di 24 geofoni orizzontali da 4.5 Hz. La energizzazione per la creazione di onde di taglio viene eseguita battendo una mazza di 8 kg su un lato di una trave (traversina) adeguatamente appesantita per aumentarne l'attrito con il terreno.Nelle onde Sh, cioè trasversali di taglio, il moto delle particelle avviene nella direzione perpendicolare alla direzione di propagazione; esse sono più lente delle onde P e la loro velocità dipende solamente dal modulo di rigidità µ e non si propagano nei fluidi.

INDAGINE E STRUMENTAZIONE ADOTTATA

Per il conseguimento di questa indagine geofisica a rifrazione per l'acquisizione delle onde P è stato ritenuto opportuno adottare uno stendimento di lunghezza pari 92 m, e per l'acquisizione delle onde Sh ne è stato adottato uno lungo 92 m. In totale lo stendimento, compreso gli scoppi esterni, è risultato di 117 m

L'adozione di queste dimensioni è stata quella ritenuta con il miglior compromesso: qualità del segnale – spazio che nel punto di massima lunghezza è risultato di m compresi gli scoppi esterni .

Lo stendimento è stato coperto per mezzo di 24 geofoni verticali con distanza intergeofonica di 4 m per l'acquisizione delle onde P, successivamente da 24 geofoni orizzontali con distanza intergeofonica di 4 m per l'acquisizione delle onde Sh.

Sono stati utilizzati sette punti di energizzazione per l'acquisizione delle onde P e SH. Al fine di ridurre il rumore e migliorare il segnale utile, è stato necessario eseguire diverse energizzazioni per ogni scoppio che poi sono state sommate (stacking); inoltre sono state eseguite delle variazione nell'amplificazione dei guadagni (gain) per ottimizzare anche il segnale proveniente dai geofoni con offset più elevati.

STRUMENTAZIONE

- <u>Un sistema di energizzazione per le onde P</u>: le onde P vengono create mediante utilizzo di una massa battente (maglio) del peso di 8 kg su una piastra di alluminio del diametro di 20 cm resa aderente con il terreno.
- <u>Un sistema composto da 24 geofoni</u> con movimento della massa verticale da 4,5 Hz del tipo elettromagnetico (Geospace GS11D 4.5Hz 4kΩ).
- <u>Un sistema di energizzazione delle onde Sh</u> La sorgente è costituita da una mazza di 8 kg battente orizzontalmente su parallelepipedo (traversina ferroviaria) disposto ortogonalmente allo stendimento e parallelo alla direzione di acquisizione dei geofoni.
 - Per aumentare l'attrito fra il terreno e la trave e di conseguenza diminuire la dispersione del colpo viene posto un carico addizionale sopra essa.
- <u>Un sistema composto da 24 geofoni</u> con movimento della massa orizzontale
- <u>Due cavi telemetrici modulari di 60 m l'uno</u> con convertitori A/D a 16 bit equidistanziati ogni 5 m.
- <u>Un sistema di raccolta dati collegato a un notebook</u> mediante cavo seriale, nel quale è stato installato il programma di acquisizione dati.
- <u>Un sistema trigger</u> composto da un geofono da 4.5 H

ELABORAZIONE SOFTWARE

L'elaborazione e la seguente modellizzazione dei dati è stata eseguita mediante il programma INTERSISM 2.1 della Geo&Soft International e può essere riassunta nelle seguenti fasi fondamentali:

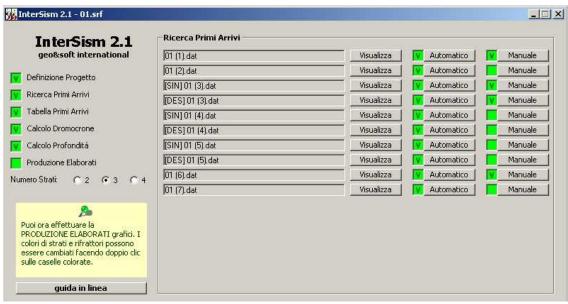


Illustrazione 4: Database

- 1. Aggiornamento delle headers e creazione dei database (Illustrazione 4). In questa fase vengono caricati i sismogrammi e impostate le caratteristiche dello stendimento: quote, offset ecc. . Questo stadio è uguale sia per lo studio delle onde P che per le onde S essendo identico lo stendimento.
- 2. Picking dei primi arrivi sia per le tracce delle onde P che le onde Sh. Prima di questa fase, se presente, vengono adottati dei filtri per eliminare o ridurre eventuali rumori o segnali non ritenuti utili.

Successivamente è stato effettuato il picking dei primi arrivi come negli esempi sotto riportati Illustrazione 5 Illustrazione 6.



Illustrazione 5: Scoppio onde P (ascissa tempi di picking, ordinata tempi)

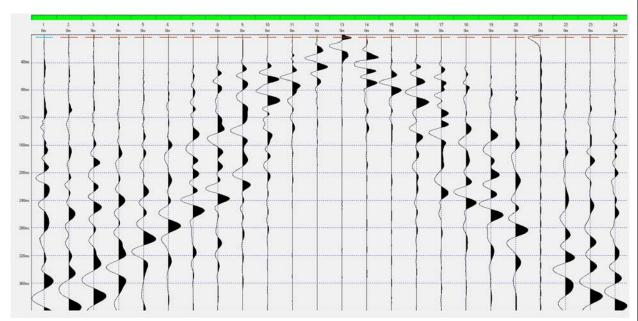


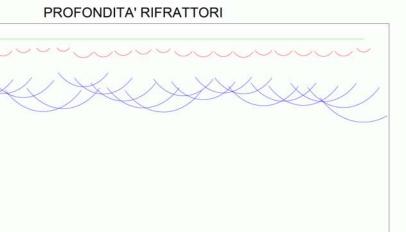
Illustrazione 6: Scoppio onde Sh (ascissa tempi di picking, ordinata tempi

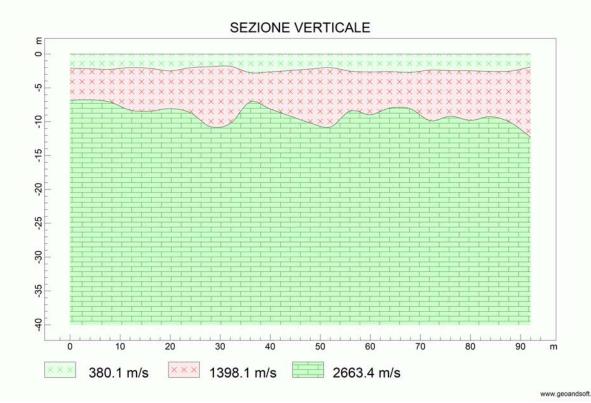
- 3. Ricostruzione e traslazione delle dromocrone
- 4. Modellizzazione e calcolo di un profilo del sottosuolo mediante il Metodo Reciproco Generalizzato GRM o/e Plus Minus .

Fra una fase e l'altra vengono eseguiti dei controlli tali da garantire la qualità e la congruenza fra il modello di sottosuolo ottenuto e la geologia nota (stratigrafia e caratteristiche geotecniche)

Le sezioni sismiche ottenute dalla modellizzazione e interpretazione dei segnali acquisiti (riportati mediante sezioni litosismografiche) permettono di individuare le principali unità geologiche.

Si ricorda che le tecniche di geofisica applicata hanno un margine intrinseco di errore dovuto a:


- Limiti della modellizzazione dell'ambiente naturale non sempre coerente (esempio strati piano-paralleli)
- Rumori di vario genere: cavi elettrici, mezzi vari, vento.
- Rumore dovuto alla strumentazione esempio: contatti dovuti all'umidità, rumore termico ecc
- Basso rapporto segnale/rumore dovute alle caratteristiche della sorgente.
- Limite della tecnica adottata. Nel caso in esame (sismica a rifrazione) la risoluzione del metodo non permette la determinazione di spessori inferiori al metro e le velocità Vs e Vp sono da considerare come la media dell'unita individuata.


Ottenuti i profili di entrambi tipi di onda dopo la quarta fase di elaborazione, è stata effettuata una e sovrapposizione delle due sezioni per verificare che i limiti individuati siano simili e, nel caso di grosse variazione, di modificarli e integrarli fino a ottenere una sezione univoca coerente.

Di seguito si riportano le sezioni sismiche delle onde P e di quelle Sh:

Qui di seguito vengono riportati vari valori calcolati durante l'elaborazione: velocità, profondità delle onde P:

ANALISI SISMICA A RIFRAZIONE

SISMICA ONDE P

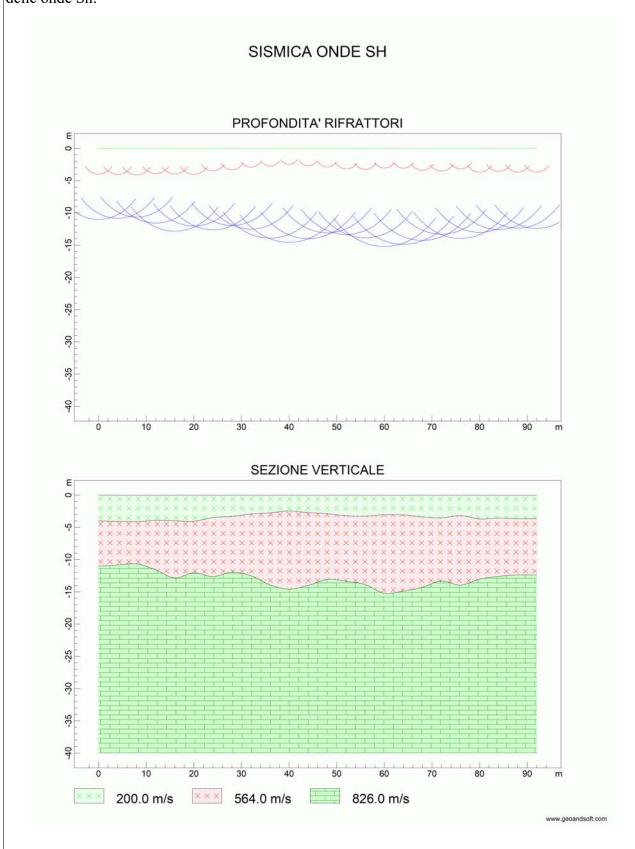
POSIZIONE DEGLI SPARI

Ascissa [m]	Quota [m]	Nome File
-8.00	0.00	01 (1).dat
-2.00	0.00	01 (2).dat
22.00	0.00	01 (3).dat
46.00	0.00	01 (4).dat
70.00	0.00	01 (5).dat
94.00	0.00	01 (6).dat
100.00	0.00	01 (7).dat

POSIZIONE DEI GEOFONI E PRIMI ARRIVI

N.	Ascissa	Quota	FBP da -	FBP da -	FBP da	FBP da	FBP da	FBP da	FBP da
	[m]	[m]	8 [ms]	2 [ms]	22 [ms]	46 [ms]	70 [ms]	94 [ms]	100
									[ms]
1	0.00	0.00	16.53	6.56	30.30	40.40	49.32	55.09	50.37
2	4.00	0.00	23.35	13.12	27.80	39.09	48.27	53.40	50.37
3	8.00	0.00	25.71	16.00	24.65	37.78	46.69	52.20	49.58
4	12.00	0.00	27.54	18.20	20.65	35.15	45.12	50.63	49.84
5	16.00	0.00	29.38	23.80	15.97	33.58	44.33	49.32	47.74
6	20.00	0.00	30.69	27.20	7.90	30.95	41.45	48.20	47.74
7	24.00	0.00	32.00	29.60	14.17	29.38	40.14	47.60	46.69
8	28.00	0.00	33.84	29.80	16.80	27.81	38.82	44.40	46.17
9	32.00	0.00	35.15	31.60	22.20	24.13	36.80	42.40	45.65
10	36.00	0.00	35.80	33.80	27.80	22.30	34.00	42.40	45.38
11	40.00	0.00	37.25	36.20	28.00	19.41	33.05	42.60	44.33
12	44.00	0.00	39.09	36.60	31.40	14.43	32.00	40.00	43.28
13	48.00	0.00	40.14	38.20	31.80	8.13	28.86	37.20	41.20
14	52.00	0.00	42.60	39.20	34.20	17.84	26.60	35.20	39.60
15	56.00	0.00	42.76	41.71	35.40	23.87	24.92	34.40	38.00
16	60.00	0.00	44.40	42.24	36.20	27.81	20.40	32.40	35.60
17	64.00	0.00	46.17	44.86	38.80	30.95	17.05	30.00	33.80
18	68.00	0.00	46.96	45.91	40.20	34.89	8.92	29.00	32.80
19	72.00	0.00	49.84	48.01	44.20	36.73	10.80	25.20	29.80
20	76.00	0.00	50.63	49.58	46.00	39.80	18.62	23.00	28.20
21	80.00	0.00	51.68	50.37	47.20	41.60	21.15	20.80	26.00
22	84.00	0.00	52.20	53.00	50.40	44.00	23.15	18.80	24.40
23	88.00	0.00	53.52	54.04	51.40	45.00	25.35	16.80	21.20
24	92.00	0.00	54.30	55.60	53.80	49.00	28.00	10.40	16.20

DISTANZA DEI RIFRATTORI DAI GEOFONI


V 03.19	Geoma di Marco Marzupini Cell: 3287255608 P.iva 03318000928	14	
---------	---	----	--

N. Geof.	Dist. Rifr. 1	Dist. Rifr. 2
	[m]	[m]
1	2.1	6.8
2	2.2	6.8
3	2.3	7.1
4	2.0	8.3
5	2.1	8.5
6	2.5	8.1
7	2.0	8.6
8	1.9	10.7
9	1.8	10.3
10	2.8	7.0
11	2.6	8.1
12	2.4	9.2
13	2.2	10.2
14	2.0	10.8
15	2.5	8.4
16	2.6	9.0
17	2.6	8.0
18	2.7	8.1
19	2.4	9.9
20	2.5	9.2
21	2.5	9.8
22	2.6	9.2
23	2.5	10.1
24	1.9	12.3

VELOCITA' DEGLI STRATI

N. Strato	Velocità [m/s]
1	380.1
2	1398.1
3	2663.4

Qui di seguito vengono riportati vari valori calcolati durante l'elaborazione: velocità, profondità delle onde Sh:

ANALISI SISMICA A RIFRAZIONE

SISMICA ONDE SH

POSIZIONE DEGLI SPARI

Ascissa [m]	Quota [m]	Nome File
-8.00	0.00	02 (1).dat
-2.00	0.00	02 (2).dat
22.00	0.00	02 (3).dat
46.00	0.00	02 (4).dat
70.00	0.00	02 (5).dat
94.00	0.00	02 (6).dat
100.00	0.00	02 (7).dat

POSIZIONE DEI GEOFONI E PRIMI ARRIVI

N.	Asciss	Quota	FBP da -	FBP da -	FBP da	FBP da	FBP da	FBP da	FBP da
	a [m]	[m]	8 [ms]	2 [ms]	22 [ms]	46 [ms]	70 [ms]	94 [ms]	100
									[ms]
1	0.00	0.00	46.32	11.00	55.40	106.19	126.76	162.01	193.91
2	4.00	0.00	51.38	25.20	49.95	101.15	125.50	158.60	190.14
3	8.00	0.00	59.73	37.00	47.43	94.44	122.14	156.20	185.52
4	12.00	0.00	67.20	42.40	38.20	89.40	118.36	152.40	178.38
5	16.00	0.00	71.40	54.20	21.83	83.11	114.17	148.20	171.25
6	20.00	0.00	82.20	72.60	10.49	77.65	109.55	141.00	165.37
7	24.00	0.00	89.80	85.20	20.15	65.06	104.09	136.80	159.50
8	28.00	0.00	93.20	92.40	34.84	60.02	100.31	131.40	156.56
9	32.00	0.00	96.20	97.00	44.07	49.53	95.70	126.40	151.10
10	36.00	0.00	99.00	104.00	53.73	40.80	90.66	118.80	146.07
11	40.00	0.00	102.40	109.20	64.22	27.40	85.62	115.80	139.35
12	44.00	0.00	109.20	115.84	71.77	15.80	78.49	111.60	138.51
13	48.00	0.00	114.20	119.62	77.23	19.73	70.51	105.40	133.47
14	52.00	0.00	120.00	126.34	83.11	31.48	65.48	102.20	128.44
15	56.00	0.00	123.40	132.21	88.98	39.45	61.28	96.20	116.20
16	60.00	0.00	129.20	138.93	91.92	45.33	49.20	91.20	109.80
17	64.00	0.00	135.20	144.39	100.73	52.47	41.13	86.40	102.00
18	68.00	0.00	143.75	149.84	107.03	57.92	19.73	77.40	103.00
19	72.00	0.00	148.00	155.72	109.13	67.16	29.38	67.20	93.80
20	76.00	0.00	153.58	159.92	115.84	75.13	45.75	56.20	87.00
21	80.00	0.00	157.30	164.11	117.52	81.85	56.66	45.20	83.00
22	84.00	0.00	161.29	166.21	123.40	88.56	63.38	31.20	75.00
23	88.00	0.00	165.01	172.93	130.95	92.34	75.55	20.20	68.00
24	92.00	0.00	168.81	175.45	132.63	94.02	87.72	10.00	54.98

DISTANZA DEI RIFRATTORI DAI GEOFONI

	V 03.19	Geoma di Marco Marzupini Cell: 3287255608 P.iva 03318000928	17	
--	---------	---	----	--

N. Geof.	Dist. Rifr. 1	Dist. Rifr. 2
	[m]	[m]
1	4.0	11.0
2	4.1	10.8
3	4.1	10.7
4	3.9	11.6
5	4.0	12.8
6	4.0	12.0
7	3.5	12.6
8	3.3	12.0
9	2.9	12.5
10	2.7	13.9
11	2.5	14.6
12	2.7	14.0
13	2.9	13.1
14	3.2	13.3
15	3.3	13.9
16	3.0	15.2
17	3.1	14.9
18	3.4	14.3
19	3.5	13.3
20	3.2	14.0
21	3.7	13.0
22	3.6	12.6
23	3.7	12.4
24	3.7	12.4

VELOCITA' DEGLI STRATI

N. Strato	Velocità [m/s]
1	200.0
2	564.0
3	826.0

CONCLUSIONI

L'analisi delle onde Sh ha consentito di determinare il profilo sismico verticale (gli spessori sono calcolati facendo la media degli strati nel profilo):

- Un primo livello con velocità 200 m/s e spessore 3,42 m
- Un secondo livello con velocità 564 m/s e spessore 9,54 m
- La sezione ottenuta mostra dai 12,96
- m di profondità una velocità delle onde S di circa 826 m/s fino alla profondità di circa 30
 m

Qui di seguito vengono riportati in tabella i risultati ottenuti e un sismo-stratigramma:

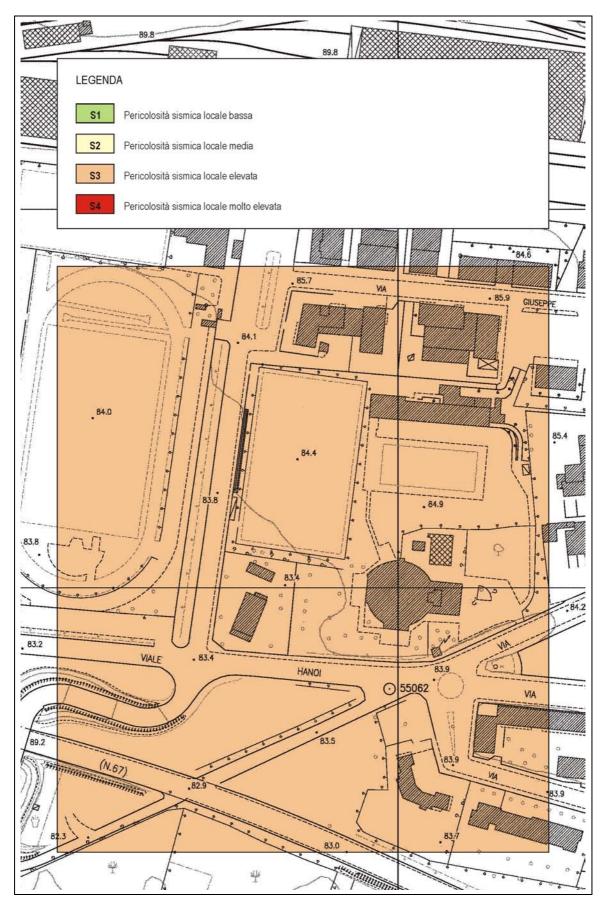
Tabella 1: PROFILO SISMICO E DATI

	VS e PARAMETRI ELASTICI					
		Spessore medio ONDE SH (m)				
Strato	Vs (m/s)	Spessore medio ONDE 311 (III)	da	a		
	SH					
1	200	3,42	0	-3,42		
2	564	9,54	-3,42	-12,96		
3	826	17,04	-12,96	30		

18/02/19	Dott Marco Marzupini
	Id:281351180219123R92

Comm. 897_109.18

Cod. 0897EL0101


Data MAGGIO 2020 Pagina 144 DI 148

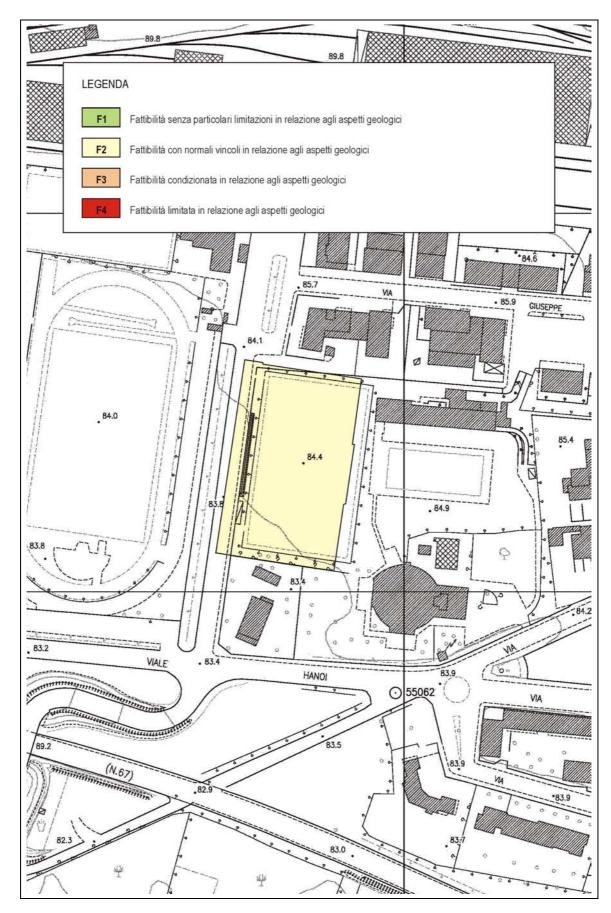
ALLEGATO 5 PERICOLOSITÀ SISMICA

Comm. 897_109.18 Cod. 0897EL0101 Data MAGGIO 2020 Pagina 145 DI 148

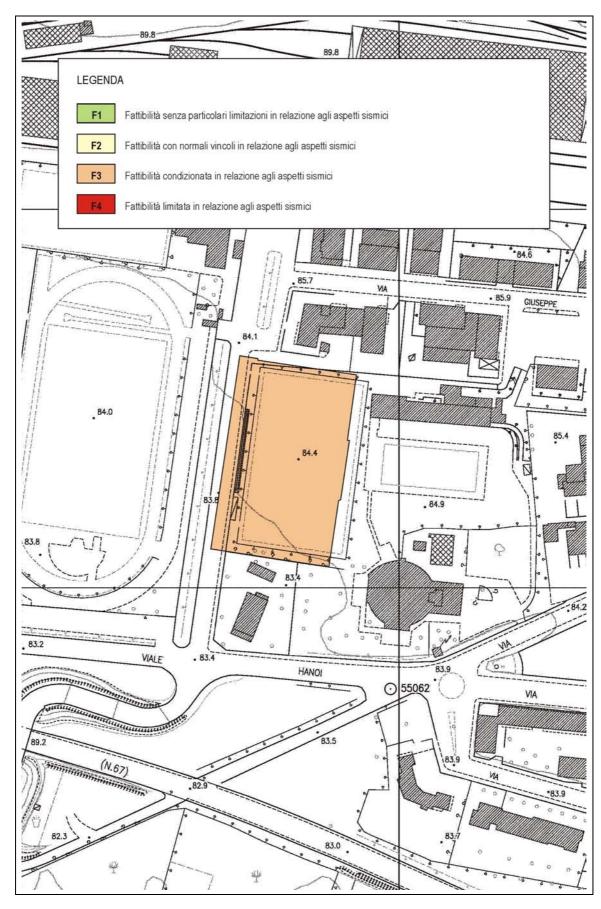
Carta della pericolosità sismica dell'area sportiva oggetto di Variante su estratto del Foglio 19L54, in scala 1:2.000, della Carta Tecnica Regionale.

Comm. 897_109.18

Cod. 0897EL0101


Data MAGGIO 2020 Pagina 146 DI 148

ALLEGATO 6 FATTIBILITÀ DEGLI INTERVENTI


Comm. 897_109.18 Cod. 0897EL0101 Data MAGGIO 2020 Pagina 147 DI 148

Carta della fattibilità in relazione agli aspetti geologici della Variante al regolamento Urbanistico su estratto del Foglio 19L54, in scala 1:2.000, della Carta Tecnica Regionale.

Comm. 897_109.18 Cod. 0897EL0101 Data MAGGIO 2020 Pagina 148 DI 148

Carta della fattibilità in relazione agli aspetti sismici della variante al Regolamento Urbanistico su estratto del Foglio 19L54, in scala 1:2.000, della Carta Tecnica Regionale.