

PROVINCIA DI **FIRENZE**

COMUNE DI PONTASSIEVE

RELAZIONE DI SUPPORTO AL PIANO ATTUATIVO ZONA P11 **BORGO VERDE - PONTASSIEVE**

HYDEA S.p.A. Via del Rosso Fiorentino, 2g 50142 - Firenze - Italia

Dott. Ing. Paolo Giustiniani Direttore Tecnico (Art. 53 D.P.R 554 21 Dicembre 1999) Ordine Ingegneri provincia di Firenze nº 1818

Dott. Ing. PAOLO GIUSTINIANI Dott. Ing. LEONARDO FURIA

Elaborato:

01

SCALA

RELAZIONE IDROLOGICO-IDRAULICA PER FOGNATURE ACQUE MISTE

COMMESSA

RESPONSABILE DI COMMESSA

DATA PRIMA EMISSIONE

Febbraio 2014

REVISIONE DATA Febbraio 2014

REDATTO

LEONARDO FURIA

PAOLO GIUSTINIANI

UNI EN ISO 9001:2000 certificato 9175-HYDE dei Sistemi Qualità Aziendali

nome file: Mascherina Relazione.dwg

INDICE

1.	PREMESSA	2
_		
2.	ANALISI IDROLOGICHE	2
3.	ANALISI RETE IDRAULICA STATO ATTUALE	5
		_
4.	ANALISI IDRAULICHE STATO DI PROGETTO AREA BORGO VERDE	6
	4.1 VERIFICHE IDRAULICHE	
	4.1.1 FOGNATURA METEORICA	6
	4.1.2 FOGNATURA ACQUE NERE	7
5	CONSIDERAZIONI PROGETTUALI FINALI	8

1. PREMESSA

La presente relazione tecnica illustra le problematiche idrauliche inerenti il sistema Fognario a servizio dell'area denominata "Borgo Verde" in comune di Pontassieve, in Provincia di Firenze. La relazione illustra:

- Analisi idrologica dei bacini afferenti all'area, con particolare riferimento agli apporti provenienti da monte ed al recapito di valle.
- Analisi speditive delle caratteristiche attuali dell'area dal punto di vista fognario con individuazione dei principali collettori esistenti.
- Analisi della rete idraulica sulla base delle cartografie delle fognature messe a disposizione dal Comune di Pontassieve e da Publiacqua spa.
- Analisi delle ipotesi progettuali presenti nel Piano Attuativo zona P11 in relazione alla problematica fognaria per area Borgo verde.
- Analisi della compatibilità idraulica (fognature) degli interventi previsti nel Piano attuativo area Borgo Verde con verifica dei collettori principali attuali fognari con tempo di ritorno 5, 10, 25 e 30 anni.
- Ipotesi progettuale delle Fognature per il comparto Borgo Verde, per tempo di ritorno di 30 anni ed individuazione dei collettori principali di fognature meteoriche e miste.

2. ANALISI IDROLOGICHE

L'analisi idrologica è stata effettuata sui bacini riportati nell'elaborato 01 "Corografia bacini idrografici fognature acque miste" con riferimento alle sezioni di chiusura B e C per i tempi di ritorno di 5, 10, 25 e 30 anni. Il calcolo delle portate di punta è stato effettuato mediante <u>il</u> metodo di corrivazione, espresso dalla formula:

$$Q = \varphi \cdot A \cdot h/t_P \cdot 1/3,6$$

dove:

Q = portata di progetto (in m³/s),

A = area del bacino alla sezione di chiusura (in km²),

h = altezza di pioggia data dall'espressione della curva di possibilità climatica (in mm),

 t_p = tempo di pioggia, posto pari al tempo di corrivazione t_c (in minuti) del bacino,

 φ = coefficiente di deflusso del bacino.

I valori del coefficiente di deflusso sono stati assegnati sulla base del rapporto tra superficie urbanizzata (equivalente ad un valore del coefficiente di deflusso pari a 0,85) e superficie a verde (valore del coefficiente di deflusso pari 0,1).

La curva di possibilità climatica utilizzata per determinare le altezze di pioggia è quella fornita dal Servizio Idrologico Regionale (ex ufficio idrografico e mareografico di Pisa), con i parametri relativi alla stazione pluviometrica di Nave di Rosano. La curva è espressa mediante una funzione a 3 parametri:

$$h = a \cdot t_p^{\ n} \cdot T_r^{\ m}$$

dove:

h = altezza di pioggia (in mm)

 T_r = tempo di ritorno

I parametri utilizzati per la stazione pluviometrica di Nave di Rosano sono i seguenti:

-
$$piogge < 1h$$
: $a = 21,79$; $n = 0,24$; $m = 0,18$.

Per la stima del tempo di corrivazione dei bacini sono state applicate varie formule, secondo il seguente prospetto (tempi di corrivazione espressi in ore).

	Giandotti	Kirpich	Ventura	Pezzoli	TC
					medio
Bacino					(ore)
В	0,52	0,18	0,21	0,20	0,27
С	0,45	0,14	0,13	0,15	0,22

Tabella 1: Tempi di corrivazione dei bacini

Le ridotte dimensioni dei bacini (tutti al di sotto del km²) e la contemporanea presenza all'interno di essi di aree pianeggianti (urbanizzate) e collinari ad elevate pendenze, rendono le stime con le

3

tradizionali formule di Giandotti e Kirpich non completamente attendibili (valori rispettivamente in eccesso e in difetto). Danno invece risultati più accettabili la formula di Ventura e quella di Pezzoli. Per le analisi idrologiche sono stati utilizzati i tempi di corrivazione medi per ciascun bacino.

Le portate di punta sono state ricavate per un tempo di ritorno pari a 5-10-25-30 anni e sono riassunte, assieme alle altre grandezze rappresentative dei bacini, nella seguente tabella.

	Superficie	Tempo di	Coefficiente	Portata	Portata	Portata	Portata
Bacino	scolante	corrivazione	di deflusso	di punta	di punta	di	di punta
	(Km ²)	(h)		TR 5	TR 10	punta	TR 30
				anni	anni	TR 25	anni
				(m ³ /s)	(m^3/s)	anni	(m ³ /s)
						(m ³ /s)	
В	0.44	0.27	0.46	4.35	4.93	5.83	6.02
С	0.17	0.22	0.45	1.97	2.23	2.64	2.73

Tabella 2: Portate di progetto per T_r = 5-10 25-30 anni

Per l'area di Piano attuativo è stato inoltre eseguita un'analisi idrologica per i due compartimenti riportati in figura:

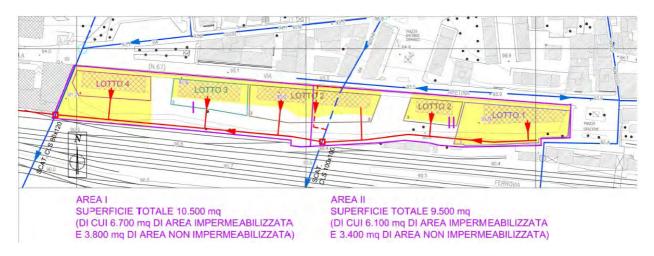


Figura 1: Individuazione bacino I e II area Borgo Verde

Per entrambi i compartimenti si riportano le portate di punta ricavate per un tempo di ritorno pari a 5-10-25 e 30 anni e sono riassunte, assieme alle altre grandezze rappresentative dei bacini.

	Superficie	Tempo di	Coefficiente	Portata di	Portata di	Portata di	Portata di
Bacino	scolante	corrivazione	di deflusso	punta TR	punta TR	punta TR	punta TR
	(Km ²)	(h)		5 anni	10 anni	25 anni	30 anni
				(m ³ /s)	(m ³ /s)	(m ³ /s)	(m ³ /s)
I	0.0105	0.27	0.58	0.13	0.15	0.18	0.19
II	0.0095	0.24	0.58	0.13	0.15	0.18	0.18

Tabella 3: Portate di progetto per $T_r = 5-10-25-30$ anni compartimento Borgo Verde

3. ANALISI RETE IDRAULICA STATO ATTUALE

La rete fognaria nel tratto di interesse è cosi descritta:

- Tratto monte Ferrovia: La rete si è sviluppata ed ampliata contemporaneamente alle urbanizzazioni; la rete di fognatura è di acque miste (bianche e nere) e raccoglie i versanti ed i fossetti dei pendii circostanti l'abitato. La fognatura ha pendenze elevate che seguono i profili stradali; I principali collettori sono due: rispettivamente uno proveniente dall'area del cimitero (scat. 80x120 cm) e l'altro da via Quona (scat. 100x100 cm).
- Tratto area Ferroviaria: L'area è chiaramente pianeggiante, non esiste una rete interna dell'area ferroviaria per quanto di interesse. Sono presenti due collettori (scat. 80x120 cm e scat. 100x100 cm) che attraversano l'area Borgo Verde ortogonalmente alla ferrovia e sottopassano i binari. A valle dei binari i collettori hanno un salto di quota (disconnessione idraulica) visibile solo per lo scat. 80x120 cm. Ai margini dell'area Borgo Verde è presente ad ovest un collettore scatolare 100x150 cm ed ad est, a servizio della piazza della stazione e di parte dell'area sovrastante, un collettore scatolare 60x70 cm. Le pendenze sono variabili dal 1.5-2 %.
- Tratto a valle della ferrovia: L'area è pianeggiante con pendenze variabili tra 1-1.5 %; Le fognature raccolgono le acque miste provenienti da monte e si indirizzano verso il Fiume Arno; La rete è abbastanza ramificata e presenta alcuni scolmatori di piena al fine di non gravare su un unico ramo. In corrispondenza della località il Palagio le acque nere proseguono in destra d'Arno fino al depuratore, mentre le eventuali piene scaricano nel fiume Arno.

4. ANALISI IDRAULICHE STATO DI PROGETTO AREA BORGO VERDE

Le analisi idrauliche sono state effettuate con i seguenti criteri:

- 1) Verifica degli attuali collettori attraversanti perpendicolarmente l'area delle ferrovie come recapiti naturali dell'area di intervento, ipotizzando la realizzazione dell'intervento di progetto come da Piano Attuativo zona P11 Borgo Verde per tempo di ritorno 25 anni.
- 2) Verifica dei collettori di progetto per smaltimento acque meteoriche del Piano Attuativo borgo Verde per tempo di ritorno 30 anni
- 3) Verifica dei collettori di progetto per smaltimento acque nere del Piano attuativo Borgo Verde

4.1 Verifiche idrauliche

4.1.1 FOGNATURA METEORICA

Le verifiche idrauliche del tratto di fognatura di nuova realizzazione sono state effettuate in moto uniforme con la formula di Gauckler-Strickler con coefficienti di scabrezza pari a 100 Di seguito si riportano i calcoli eseguiti per i singoli collettori delle acque meteoriche e miste

Collettore	Pendenza condotta (m/m)	Larghezza collettore (m)	Altezza collettore (m)	Portata Idraulica (m³/s)	Portata Idrologica TR 30 anni (m³/s)	
Collettore Condotta Fognaria bacino B (vedi tav01)	0.02	0.8	1.2	6.08	6.02	VERIFICATO
Collettore Condotta Fognaria bacino C (vedi tav01)	0.015	1.0	1.0	5.89	2.73	VERIFICATO
Collettore Condotta Fognaria bacino II (vedi fig1) Collettore Condotta	0.003	1.0	1.0	2.63	0.18	VERIFICATO
Fognaria bacino I (vedi fig1)	0.003	1.0	1.0	2.63	0.19	VERIFICATO

Tabella 4: VERIFICA IDRAULICA compartimento Borgo Verde

Dall'analisi della tabella suddetta si evince che:

- Le portate idrauliche smaltibili dai due collettori esistenti (rispettivamente del bacino B e
 C) sono verificate rispetto alla portata idrologica trentennale (Qidraulica>Qidrologica)
 con l'ipotesi di realizzazione del Piano Attuativo dell'area Borgo Verde totalmente impermeabile (a vantaggio di sicurezza).
- Le portate idrologiche dei due comparti di progetto indicati nella figura 1 (Comparto I e II), sono ampiamente verificate con i collettori per acque meteoriche di progetto 1.00x1.00 m. A riguardo si fa presente che, a vantaggio di sicurezza ed al fine di non aver aggravio sulle aree a valle, il collettore 1.00x1.00 m è sovradimensionato rispetto alle portate idrologiche venticinquennali attese. Considerando la larghezza del collettore pari ad 1 metro ed un battente d'acqua di 20 cm già si ottiene, con la pendenza dello 0.3 %, una portata smaltibile pari a 0.3 mc/s>0.19 mc/s. Tale ipotesi consente di ottenere un volume di invaso in linea di ca 300 mc.
- Come si evince dalla tav.04 e 06, ad ulteriore sicurezza del sistema, è previsto la realizzazione di un pozzetto scolmatore che rende la rete più flessibile agli eventi di piena correlati ad eventi di debris flow e materiale flottante che potrebbe ostruire uno dei due collettori esistenti sottopassanti l'area ferroviaria. Anche in corrispondenza del collettore posto al margine ovest di Borgo Verde è prevista la realizzazione di un ulteriore scolmatore e relativo collettore in direzione ovest verso area Borgo Nuovo. Questo secondo scolmatore ed il relativo collettore potranno essere realizzati solo quando sarà realizzato l'intervento denominato Borgo Nuovo. Tale soluzione non inficia comunque nè il funzionamento della rete nè le soluzioni proposte.

4.1.2 FOGNATURA ACQUE NERE

Il sistema di smaltimento delle fognature "nere" è previsto con un collettore in polietilene o pvc DN200 con pendenza 0.5 %. In corrispondenza dei due collettori esistenti dell'Area Borgo Verde è prevista la realizzazione di un pozzetto di ispezione/analisi e confluenza acque "nere"-"miste". Il tutto è rappresentato nella tavola 05.

Il dimensinamento del collettore Dn200 è stato effettuato in moto uniforme utilizzando i dati di consumo giornaliero (Cg [mc/gg]) indicati nella VAS della Variante al RU per l'ambito di trasformazione p6- ex aree ferroviarie di Pontassieve e P2 - Ruffino via Aretina - Sintesi non tecnica; paragrafo 6.3.1 approvvigionamento idrico, reflui e depurazione.

7

Sulla base del documento suddetto si è ricavato un consumo giornaliero di acqua per il comparto P11 pari a (Cg=30.17+3.96+130= 164.13 mc/gg), considerando un coefficiente di punta pari a 2 si ottiene una portata di punta pari a circa 330 mc/gg pari a circa 4 l/s. In moto uniforme una tubazione Dn200 smaltisce una portata, con la pendenza pari a 0.5%, pari a 15 l/s > 4 l/s.

5. CONSIDERAZIONI PROGETTUALI FINALI

Sulla base delle verifiche effettuate, dei sopralluoghi e delle cartografie delle fognature messe a disposizione dal comune di Pontassieve si evince che:

- 1. Il sistema fognario del tratto di monte ha pendenze molto elevate (superiori al 5-10%), i collettori di acque miste raccolgono un ampio bacino rurale di versante che negli anni precedenti è stato tombato a vantaggio delle nuove lottizzazioni. In corrispondenza dell'area ferroviaria la morfologia dei terreni spiana e le pendenze si riducono al 1.5-2%. Tale configurazione si mantiene anche a valle della Ferrovia fino al Fiume Arno con pendenze dei collettori intorno al 1.5%. In corrispondenza della ferrovia sia a monte che a valle c'è un salto di quota e disconnessione idraulica.
- 2. L'area Borgo Verde allo stato attuale è attraversata da due collettori di acque miste (rispettivamente due scatolari in cls di dimensioni 100x100 cm e 80x120 cm) che raccolgono le fognature di monte e, sottopassando l'area ferroviaria, si dirigono verso la sponda dx del Fiume Arno. Oltre l'azienda Ruffino c'è un ulteriore collettore (scatolare 100x150 cm) che raccoglie acque del versante di monte. All'altezza della località il Palagio confluiscono in un unico collettore, le acque nere proseguono verso il depuratore, mentre le eventuali piene sono scaricate nel Fiume Arno tramite due scolmatori.
- 3. L'area Borgo Verde già allo stato attuale è in parte impermeabilizzata ed in parte abbandonata. Da sopralluoghi non sono emersi e visibili sistemi fognari interni a servizio dell'area stessa, l'acqua defluisce in maniera diffusa verso i due collettori o si infiltra nei terreni abbandonati.
- 4. L'area Borgo verde come dimensioni (ca 2 ha) influisce relativamente poco sul funzionamento dei collettori esistenti in relazione ai bacini sottesi. Pur tuttavia potrebbe essere determinante nel caso di eventi di breve durata e notevole intensità in quanto la rete fognaria diminuisce la sua pendenza proprio in corrispondenza dell'area Borgo Verde. Inoltre il tratto di monte raccoglie versanti naturali e quindi in caso di eventuali piene sicuramente trasporta a valle materiale flottante e colate di fango.

8

- 5. L'ipotesi progettuale delle fognature, da integrare e rivedere nelle future fasi progettuali a seguito anche di rilievi di dettaglio e dei progetti esecutivi delle sistemazioni, deve da un lato verificare la capacità dei collettori attraversanti l'area in considerazione del non aggravio delle condizioni di valle con la Nuova Lottizzazione, dall'altro prevedere la realizzazione di un sistema di smaltimento per le acque meteoriche e nere adeguato alle attività edificatorie e di impermeabilizzazione previste
- 6. Il sistema di fognature di progetto al fine di ottemperare quanto indicato al punto precedente, prevede:
 - Realizzazione di un collettore scatolare in cls 100x100 cm per le fognature di acque meteoriche posto parallelo alla ferrovia, a valle dei 4 lotti previsti nel Piano attuativo. Il collettore scarica nei due collettori esistenti perpendicolari all'area. I due collettori attuali sono stati verificati per la portata trentennale con la realizzazione del Piano attuativo; solo in corrispondenza di una parte del lotto 2 il collettore esistente dovrà essere deviato e ricostruito con le stesse pendenze e dimensioni dell'attuale. A ulteriore sicurezza dell'area, in analogia con quanto è stato realizzato sia a monte dell'area ferroviaria sia a valle, si dovranno prevedere degli scolmatori di piena in presenza dei collettori attuali al fine di suddividere le eventuali portate in eccesso su tutti e due i collettori esistenti. Tale accortezza, da dimensionare nella progettazione esecutiva, consente di non "aggravare" idraulicamente singolarmente i collettori della rete a seguito della lottizzazione ma di suddividere, le eventuali piene, su tutti e due gli attraversamenti nell'area. Solo così si potranno evitare eventuali problemi dovuti ad intasamenti da "debris flow" o da non ricezione dei collettori di valle per particolari situazioni od eventi. Inoltre quando si realizzerà anche la sistemazione dell'area Borgo Nuovo si dovrà prevedere un ulteriore pozzetto scolmatore per gli stessi motivi addotti in precedenza anche in considerazione che il tratto dello scatolare 100x150 cm a valle dell'area Borgo Nuovo è stato adeguato fino al Fiume Arno negli anni ottanta/novanta. I collettori esistenti nell'area oggetto di Piano attuativo, dovranno comunque essere ispezionati ed eventualmente ricostruiti o riparati in quanto sono stati ormai abbandonati da molti anni. In fase di

- progettazione esecutiva dovranno essere verificati sia strutturalmente che come quote ed eventualmente ricostruiti.
- Il Collettore di progetto 100x100 cm è idraulicamente sovradimensionato rispetto alle nuove Lottizzazioni, Tale ipotesi progettuale è stata prevista al fine di determinare un volume di invaso per ritardare gli apporti delle nuove aree impermeabilizzate del Piano attuativo Borgo Verde sulla rete esistente. Si fa comunque presente che già allo stato attuale parte delle aree sono impermeabilizzate e che tutta l'area in maniera diffusa scarica sui collettori attuali. Le pendenze previste per i collettori sono pari allo 0,3% al fine di accentuare la capacità di invaso suddetta.
- Per le acque nere si prevede la realizzazione di un collettore DN 200 in polietilene o pvc che raccoglie tutti i lotti edificati. Tale collettore è dimensionato sui consumi dichiarati nel VAS allegata al Piano Attuativo. I collettori di fognatura nera saranno portati fino al confine del Piano Attuativo e quindi, tramite pozzetti di confluenza, scaricheranno nei collettori misti in analogia alle fognature esistenti nel Comune di Pontassieve.

TABELLA CALCOLI IDROLOGICI

	H 0 (m)	144,775									Tritomo (anni)	ιņ
	Hmax (m slm)	375									Ē	0,18
	l (m/m)	0,19		Tc (minuti)	31,03098249	10,58680035	12,53684171	11,83449424			'n	0,24
	Lmax (Km)	1,550		V m/s	0,8325013	2,44014551	2,0605934	2,18288444			a1	21,79
Dati	L (Km)	1.550	Risultati	L	•				 -		S(Km2)	0,440
	H0 (m slm)	85,45							minuti	16,50	Tp (ore)	0,27
	H (m s/m)	230,225		Tc (ore)	0,52	0,18	0,21	0,20	ore	0,27	h (altezza) (mm)	21
	A (Kmq)	0.44		autore	GIANDOTTI	KIRPICH	VENTURA	PEZZOLI	 -,,	Tc medio bacino	K (coeff. Afflusso)	0,46
<u> </u>	1	Demission		L	baciní tozzi	Bacini rurali e pendenze notevoli				J		

a° 29,21

4,35

ග්

О/Агеа [m3/Кт.q s]

Q (m3/s)=

1,57

Vel media (m/s)

	7	2			5				anni)			
	H 0 (m)	144,775							Tritomo (anni) 10			
	Hmax (m slm)	37.5							m1 0,18			
	[(m/m)	0,19		Tc (minuti) 31.03098249	10,58680035	11,83449424			n1 0,24			
	Lmax (Km)	1,550		V m/s 0.8325013					a1 21,79	88 83 14	<u>;</u>	
Dati	L (Km)	4,550	Risultati						S(Km2) 0,440			
	H0 (m slm)	85,45		 - 	1		, ,	minut 16,50	Tp (ore) 0,27			
	H (m slm)	230,225		Tc (ore)	0,18	0,20		ore 0,27	h (altezza) (mm) 24			
	A (Kmq)	0.4k		autore	KIRPICH	PEZZOLI		Tc medio bacino	K (coeff. Afflusso) 0,46	4,93	11,2	1,57
				h a sin'i famaji	Bacini rurali e pendenze notevoli		more			Q (m3/s)=	Q/Area [m3/Kmq s]	Vel media (m/s)

ζ,

	H 0 (m)	144,775										Tritorno (anni) 25			
	Hmax (m sfm)	3.15		ı	1							m1 0,18			
	(m/m) I	0,19		Tc (minuti)	31,03098249	10,58680035	12,53684171	11,83449424				n1 0,24			
	Lmax (Km)	1,550		S/m/								a1 21,79	39 a° 39 15	!	
Datí	L (Km)	1,550 年	Risultati									S(Km2) 0,440			
	Ho (m slm)	85.45								minuti	16,50	Тр (отв) 0,27			
	H (m sím)	230,225		Tc (are)	0,52	0,18	0,21	0,20		ore	0,27	h (altezza) (mm) 29			
	A (Kmq)	0.444		autore	GIANDOTTI	KIRPICH	VENTURA	PEZZOLI			Tc medio bacino	K (coeff. Afflusso) 0,46	5,83	13,2	1,57
	•	- Annual Marie Control of the Contro		-	baciní tozzí	Bacini rurali e pendenze notevoli	-	1					Q (m3/s)≈	Q/Area [m3/Kmq s]	Vel media (m/s)

Dati	H (m slm) H0 (m slm) L (Km) L max (Km) I (m/m) Hmax (m slm) H 0 (m)	230,225 85,45 1,550 1,550 0,19 375 144,775	Risultati					0,20 2,18288444 11,83449424	ore minuti	0,27 16,50	(altezza) (mm) Tp (ore) S(Km2) a1 n1 m1 Tritorno (anni) 30 0,27 0,440 21,79 0,24 0,18 30	a° 40.47		
Dati	L (Km)	1,550	Risultat								S(Km2) 0,440			
	H0 (m slm)	85,45							minuti	16,50	Тр (оге) 0,27			
	H (m slm)	230,225		Tc (ore)	0,52	0,18	0,21	0,20	ore	0,27	h (altezza) (mm) 30			
	A (Kmq)	75'0		autore	GIANDOTTI	KIRPICH	VENTURA	PEZZOIJ	in the latest the second secon	Tc medio bacino	K (coeff. Afflusso) 0,46	6,02	13,7	1,57
					bacini tozzi	Bacini rurali e pendenze notevoli				L .		Q (m3/s)=	Q/Area [m3/Kmq s]	Vel media (m/s)

	A (Kmq)	H (m slm)	H0 (m sim)	Dati L (Km)	Гтах (Кт)	І (т/т)	Hmax (m sfm)	Н О (т)
SACESS SECTION AND ADDRESS OF THE PARTY OF T	0.17	168,25	86.3	1,080	1,080	0,15	250	81,75
				Risultati			¥.	
- 1	autore	Tc (ore)			V m/s	Tc (minuti)	1 1	
1 1	GIANDOTTI	0,45		•	0,66375533	27,11842643		
- 1	KIRPICH VENTURA	0,14			2,3098631	0,091011050 7,792669632		
1 1	PEZZOLI	0,15			1,96508713	9,159899202		
		-						
	THE PROPERTY OF THE PROPERTY O	ore	minuti					
1 1	Tc medío bacino	0,22	13,19					
					-			
	K (coeff. Afflusso) 0,45	h (altezza) (mm) 20	Tp (ore) 0,22	S(Km2) 0,170	a1 21,79	n1 0,24	m1 4 0,18	Tritorno (anni) 5
	1,97				o a a o			
	11,8				1			
	1,36							

	Н 0 (т) 81,75				Tritomo (anni) 25		
	Нтах (т slm) 250				m1 0,18		
	<i>I (m/m)</i> 0,15		Tc (minuti) 27,11842643 8,691511058 7,792669632 9,159899202		n1 0,24		
	<i>Lmax (Km)</i> 1,080		V m/s 0,66375533 2 2,07098626 8 2,3098631 1,96508713 9		a1 21,79	a° 39,15	
Dati	L (Кт) 1,086	Risultati			S(Km2) 0,170		
	H0 (m sfm)			<i>minuti</i> 13,19	Tp (ore) 0,22		
	H (m slm) 168,25		Tc (ore) 0,45 0,14 0,13 0,15	0,22	h (altezza) (mm) 27		
	A (Kmg) 0,17		autore GIANDOTTI KIRPICH FENTURA PENTURA	Tc medio bacino	K (coeff. Afflusso) 0,45	2,64 8 8 8 8	1,36
			bacini tozzi Bacini rurali e pendenze notevoli			Q (m3/s)=	Vel media (m/s)

Dati L (Km) L (m/m) H max (m slm) H 0 (m)	86,5 1,080 1,080 0,15 250 81,75	Risultati	V m/s Tc (minuti) 0 66378533 27 11842843			minuti 13,19	Tp (ore) S(Km2) a1 n1 m1 Triforno (anni) 0,22 0,170 21,79 0,24 0,18 30	a° 40.47		
A (Kmq) H (m slm	0,17 168,25		L	KIRPICH 0,14 VENTTRA 0,13		oreTc medio bacino0,22	K (coeff. Afflusso) h (altezza) (mm) 0,45 28	2,73	16,0	1,36
			in the second se	Bacini rurali e pendenze notevoli				Q (m3/s)=	Q/Area [m3/Kmq s]	Vel media (m/s)

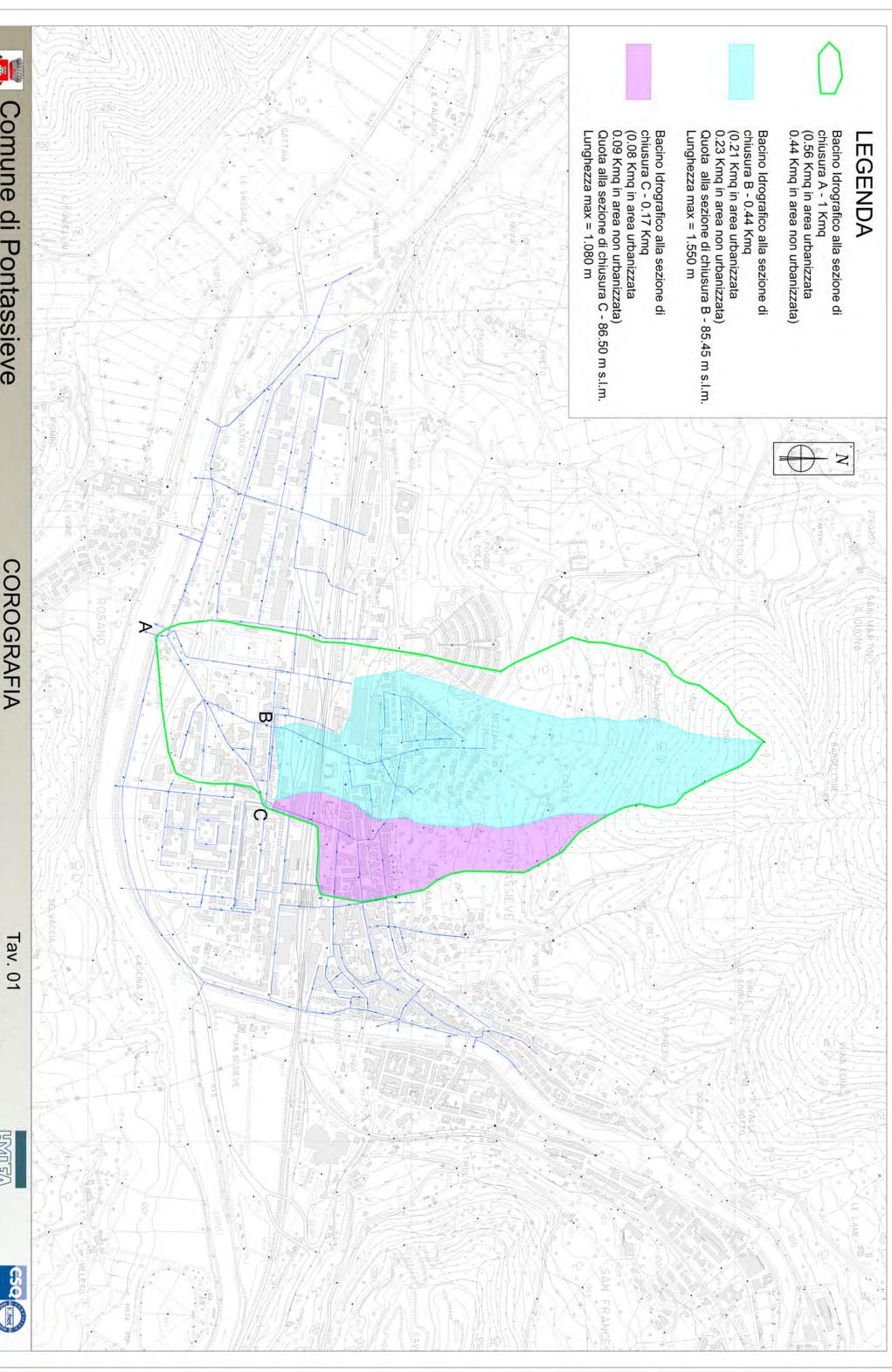
	Н 0 (т) 1,45				Tritomo (anni) 5			
	Hmax (m slm)				m1 0,18			
	<i>I (m/m)</i> 0,01		Te (minuti) 47,95116786 7,224635502 1,936673695 7,204963806		n1 0,24			
	Lmax (Km) 0,240		V m/s 0,0834182 0,55366115 2,06539698 0,55517281		a1 21,79	a" 29.21		
Dati	L (Km)	Risultati			S(Km2) 0,011			
	H0 (m slm)			<i>minuti</i> 16,08) Tp (ore) 0,27			
	H (m slm) 90,35		Tc (ore) 0,80 0,12 0,03 0,03	ore · 0,27	h (altezza) (mm) 21			
	A (Kma) 0,0105		autore GIANDOTTI KIRPICH VENTURA PEZZOLI	Tc medio bacino	K (coeff. Afflusso) 0,58	0,13	12,7	0,25
			bacini tozzi Bacini rurali e pendenze notevoli			Q (m3/s)=	Q/Area [m3/Kmq s]	Vel media (m∕s)

	I(m/m) Hmax $(m slm)$ H 0 (m)	0.01 (91.3)		Tc (minuti)	47,95116786	7,224635502	1,936673695	7,204963806			n1 m1 Tritorno (anni)			
	Lmax (Km)	0,240		V m/s	0,0834182	0,55366115	2,06539698	0,55517281			a1 21,79	a° 33.14	1	
Dati	L (Km)	6,240	Risultatí								S(Km2) 0,011			
	Ho (m slm)	(6/88)							minuti	16,08	Тр (огв) 0,27			
	H (m slm)	90,35		Tc (ore)	0,80	0,12	0,03	0,12	ore	0,27	h (altezza) (mm) 24			
	A (Kma)	0,0105		aufore	GIANDOTTI	KIRPICH	VENTURA	PEZZOLI		Tc medio bacino	K (coeff. Afflusso) 0,58	0,15	14,4	0,25
				. L	bacíni tozzi	Bacini rurali e pendenze notevoli	•			11		Q (m3/s)=	O/Area [m3/Kmq s]	Vel media (m/s)

H G (m)	1,45				Tritorno (annl) 25			
Hmay (m elm)	61.8				тт 0,18			
(m/m)	0,01		Tc (minuti) 47,95116786 7,224635502 1,936673695 7,204963806		n1 0,24			
1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	0,240		Vm/s 0,0834182 4 0,55366115 7 2,06539698 1 0,55517281 7		a1 21,79	a° 39,15		
Datí	L (MM) 0,240	Risultati			S(Km2) 0,011			
	H0 (m sim)			minuti 16,08	Tp (ore) 0,27			
	H (m slm) 90,35		Tc (ore) 0,80 0,12 0,03 0,12	ore 0,27	ћ (altezza) (mm) 28			
	A (Kmq) 0.0105		aufore GIANDOTTI KIRPICH VENTURA PEZZOLI	Tc medio bacino	K (coeff. Afflusso) 0,58	0,18	17,1	0,25
			bacini rurali e pendenze notevoli			Q (m3/s)=	Q/Area [m3/Kmq s]	Vel media (m/s)

				Dati				
1	A (Kmq)	H (m slm)	(m) s(m)	L (Km)	Lmax (Km)	I (m/m)	Hmax (m slm)	H 0 (m)
	0,0105	90,35	6*88	0,240	0,240	0,01	91,8	1,45
U				Risultati				
	autore	Tc (ore)			S/m/	Tc (minuti)	T I	
bacini tozzi Bacini rurali e nendenze notevoli	GIANDOTTI	0,80			0,0834182	47,95116786 7,224635502		
	VENTURA	60,0			2,06539698	1,936673695		
1	PEZZOLI	0,12			0,55517281	7,204963806		
<u></u>	THE RESIDENCE OF THE PARTY OF T	ore	minuti					
L J	Tc medio bacino	0,27	16,08					
	K (coeff. Afflusso) 0,58	h (altezza) (mm) 29	Тр (оге) 0,27	S(Km2) 0,011	a1 21,79	n1 0,24	m1 0,18	Tritorno (anni) 30
Q (m3/s)=	0,19				1 0 0			
Q/Area [m3/Kmq s]	17,6				40,4/			
Vel media (m/s)	0,25							

	H 0 (m)	4,1									Tritorno (anni) 10			
	Hmax (m slm)	25		Y [m1 0,18			
	I (m/m)	0,01		Tc (minutí)	43,72860486 5.932380366	1,842144131	5,578018081				n1 0,24			
	Lmax (Km)	0,200			0,07522775		0,59758382				a1 21,79	83.3.14	· ·	
Dati	L (Km)	0.500	Risultati								S(Km2) 0,010			
	H0 (m stm)	89,2						_	minuti	14,27	Тр (оге) 0,24			
	H (m slm)	9'06		Tc (ore)	0,73	0,03	60'0		ore	0,24	h (altezza) (mm) 23			
	A (Kmq)	geon o		autore	GIANDOTTT	VENTURA	PEZZOLI		***************************************	Tc medio bacino	K (coeff. Afflusso) 0,58	0,15	15,9	0,23
					bacini tozzi	בפלייון זמושון כ אכוותכו ולב ווסיפאביו	Jd		I	-		Q (m3/s)=	Q/Area [m3/Kmq s]	Vei media (m/s)

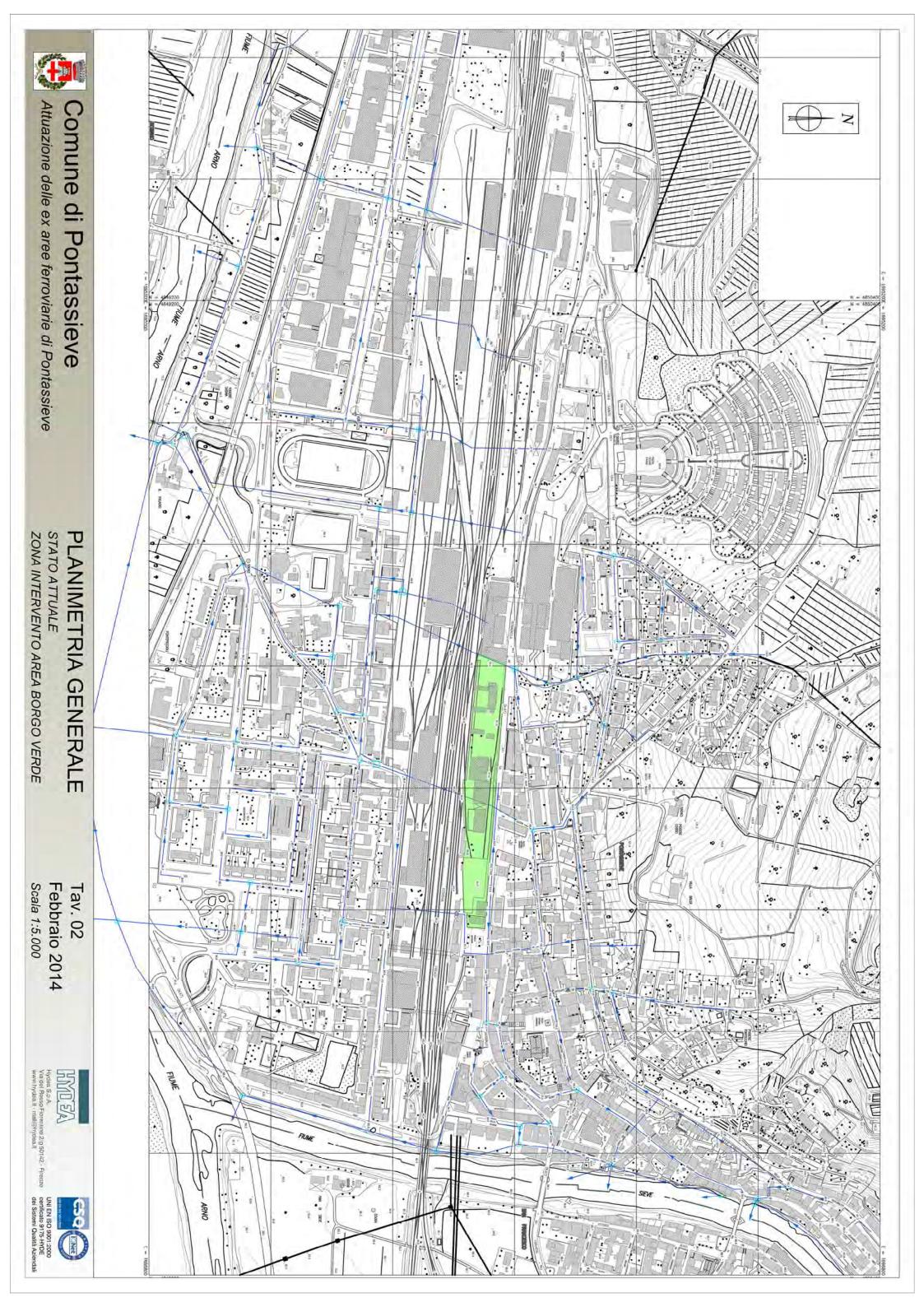

				Dati				
	A (Kmq)	H (m slm)	H0 (m slm)	Т (Кт)	Lmax (Km)	I (m/m)	Hmax (m slm)	H 0 (m)
	Scoric of S	9'06	89,2	0.200	0,200	0,01	82	4,1
				Risultati				
	autore	Tc (ore)	,	I	V m/s	Tc (minuti)		
bacini tozzi	GIANDOITI	0,73		4	lie.	43,72860486	_	
Bacini rurali e pendenze notevoli		0,10			0,561888	5,932380366		
•	VENTURA	0,03			1,80948563	1,842144131		
	PEZZOII	60'0			0,59758382	5,578018081		
		ore	minuti					
	Tc medio bacino	0,24	14,27					
	K (coeff. Afflusso)	h (altezza) (mm) 28	Tp (ora) 0.24	S(Km2)	a1 21.79	n1 0.24	m1 0,18	Tritomo (anni) 25
	2,0	3		2	I			
Q (m3/s)=	0,18				а ок 1,1			
Q/Area [m3/Kmq s]	18,8				2			
Vel media (m/s)	0,23							

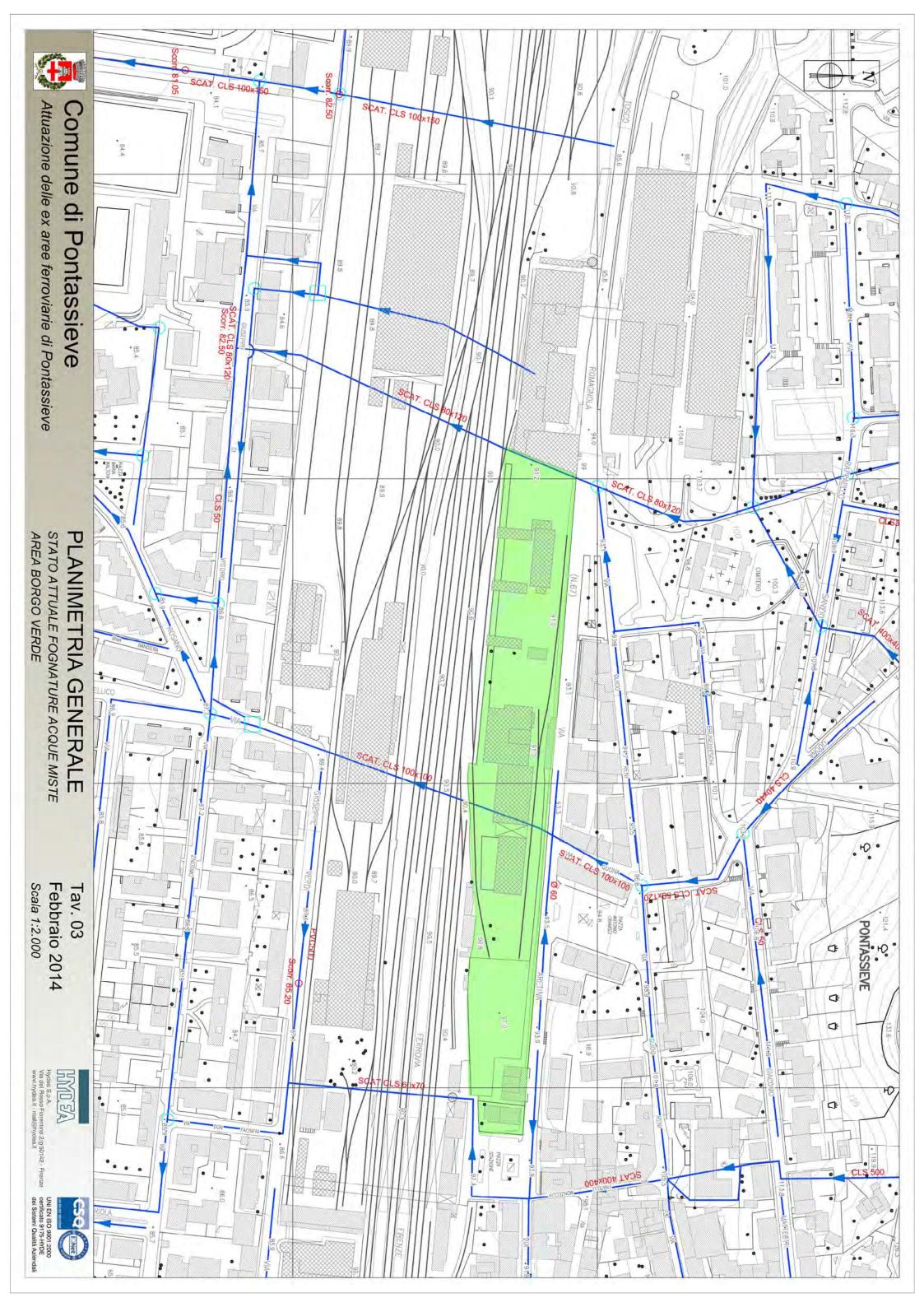
	Lmax (Km) I (m/m) Hmax $(m slm)$ H $0 (m)$	0,200 0,01 92 1,4	Landaugus .	V m/s Tc (minuti)	0,07622775 43,72860486	0,561888 5,932380366	1,80948563 1,842144131	0,59758382 5,578018081				a1 n1 m1 Tritorno (anni) 21,79 0,24 0,18 30	a, 40.47	- (-)-	
Dati	H0 (m slm) L (Km)	89,2 0,200	Risultati		ľ					minuti	14,27	Tp (ore) S(Km2) 0,24 0,010			
	H (m slm)	9,06		Tc (ore)	0,73	0,10	0,03	60'0		ore	0,24	h (altezza) (mm) 29			
	A (Kmq)	\$600.0		autore	GIANDOTTI	KIRPICH	VENTURA	PEZZOLI			Tc medio bacino	K (coeff. Afflusso) 0,58	0,18	19,4	0,23
	1				bacini tozzi	Bacini rurali e pendenze notevoli							Q (m3/s)=	Q/Area [m3/Kmq s]	Vel media (m/s)

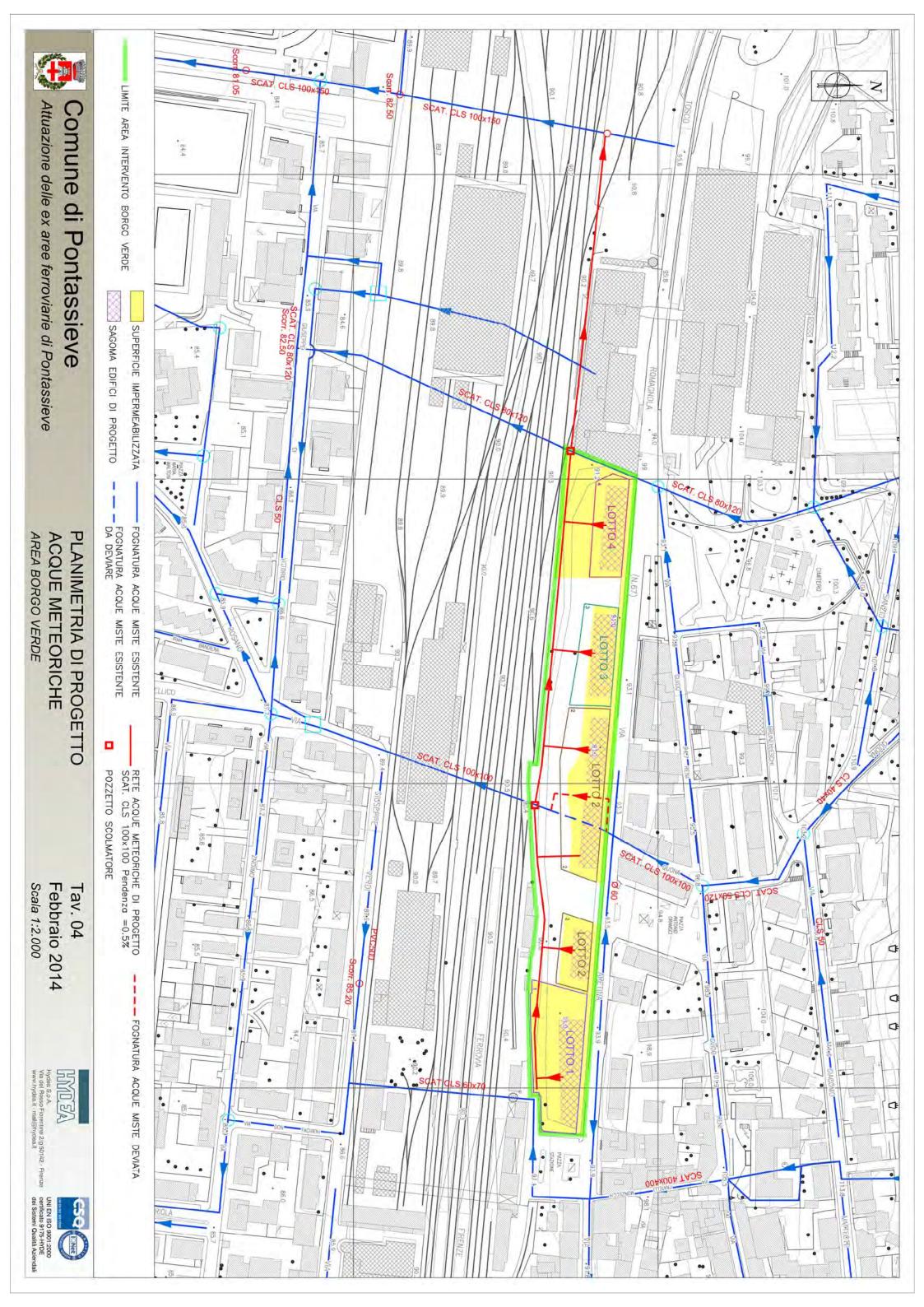
TABELLA CALCOLI IDRAULICI

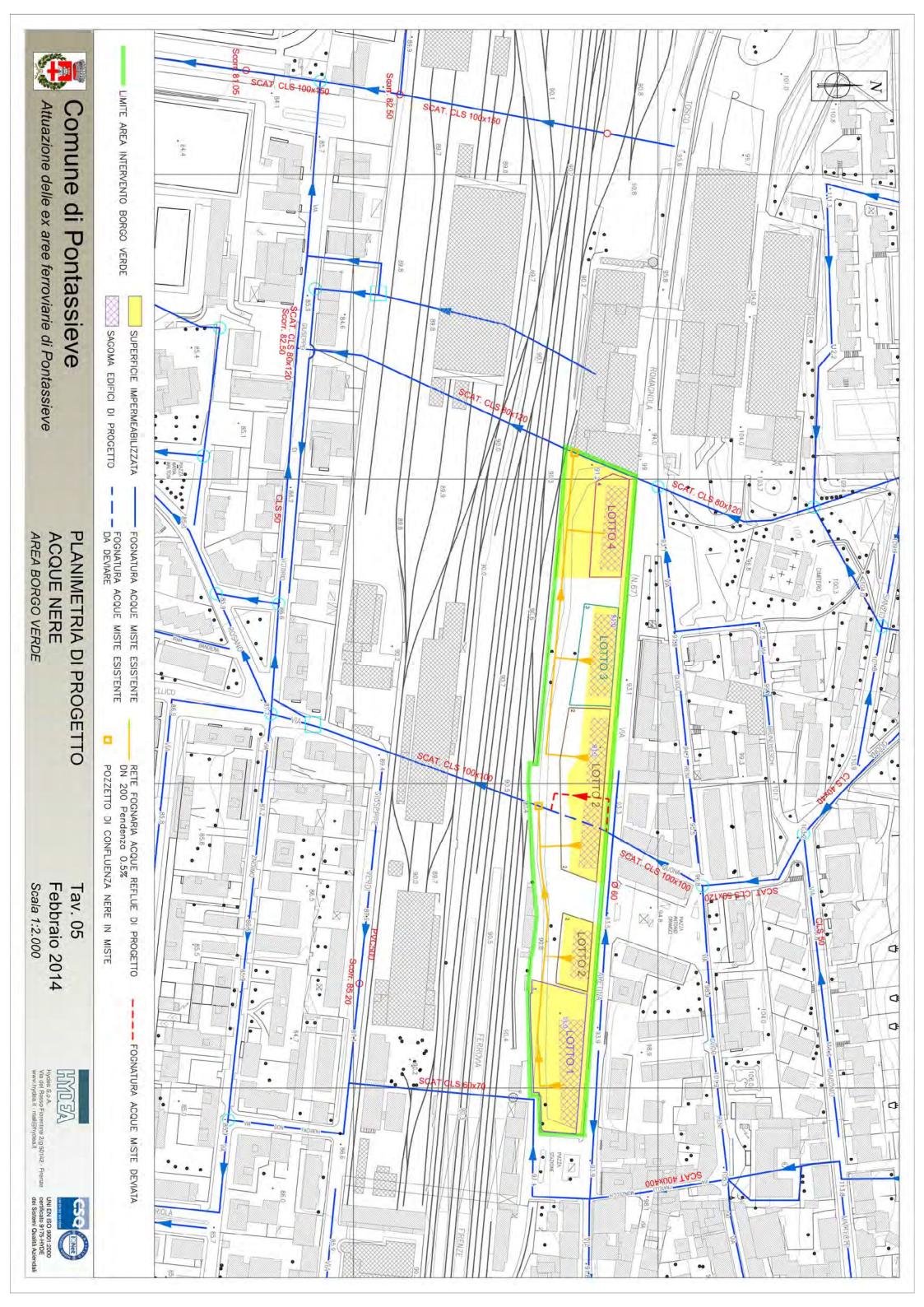
Portata Condotta fo	Portata Condotta fognaria (area B) [80x120]	Portata Condotta fogr	Portata Condotta fognaria (area C) [100x100]	Portata Condotta fogn	Portata Condotta fognaria lotti I e II [100x100]
II CL	0,02	II Q.	0,015	li C.	0,003
L	8°.0	٦	-	_1	~
Lsup.	8,0	Lsup.	_	Lsup.	~
·	<u> </u>		_	T	Lon
O	100	O	100	O	100
ιņ	0,0	w	0,0	ທ	0,0
A=	1,0	A=	1,0	A=	1,0
₽.	0,30		0,33	R=	0,33
Qmanning	6,08	Qmanning	5,89	Qmanning	2,63
∴	6,337663371	· =/	5,887959215		2,633175411

SCHEMI DI PROGETTO (DA TAV 01 A TAV 06)


Comune di Pontassieve Attuazione delle ex aree ferroviarie di Pontassieve


BACINI IDROGRAFICI FOGNATURE ACQUE MISTE


Febbraio 2014 Scala 1:10.000


Hydea S.p.A.
Via del Rosso Florentino 2/g 5014
www.hydea it - mall@hydea.it

